779 resultados para Fuzzy Boolean Nets
Resumo:
In the paper a fuzzy sets implementation into web sites classification is considered. Web sites external features are addressed and the possibility to use them for the classification is proved. An example with five different categories classification is given.
Resumo:
Authors analyses questions of the subjective uncertainty and inexactness situations in the moment of using expert information and another questions which are connected with expert information uncertainty by fuzzy sets with rough membership functions in this article. You can find information about integral problems of individual expert marks and about connection among total marks “degree of inexactness” with sensibility of measurement scale. A lot of different situation which are connected with distribution of the function accessory significance and orientation of the concrete take to task decision making are analyses here.
Resumo:
The system of development unstable processes prediction is given. It is based on a decision-tree method. The processing technique of the expert information is offered. It is indispensable for constructing and processing by a decision-tree method. In particular data is set in the fuzzy form. The original search algorithms of optimal paths of development of the forecast process are described. This one is oriented to processing of trees of large dimension with vector estimations of arcs.
Resumo:
Development-engineers use in their work languages intended for software or hardware systems design, and test engineers utilize languages effective in verification, analysis of the systems properties and testing. Automatic interfaces between languages of these kinds are necessary in order to avoid ambiguous understanding of specification of models of the systems and inconsistencies in the initial requirements for the systems development. Algorithm of automatic translation of MSC (Message Sequence Chart) diagrams compliant with MSC’2000 standard into Petri Nets is suggested in this paper. Each input MSC diagram is translated into Petri Net (PN), obtained PNs are sequentially composed in order to synthesize a whole system in one final combined PN. The principle of such composition is defined through the basic element of MSC language — conditions. While translating reference table is developed for maintenance of consistent coordination between the input system’s descriptions in MSC language and in PN format. This table is necessary to present the results of analysis and verification on PN in suitable for the development-engineer format of MSC diagrams. The proof of algorithm correctness is based on the use of process algebra ACP. The most significant feature of the given algorithm is the way of handling of conditions. The direction for future work is the development of integral, partially or completely automated technological process, which will allow designing system, testing and verifying its various properties in the one frame.
Resumo:
An original heuristic algorithm of sequential two-block decomposition of partial Boolean functions is researched. The key combinatorial task is considered: finding of suitable partition on the set of arguments, i. e. such one, on which the function is separable. The search for suitable partition is essentially accelerated by preliminary detection of its traces. Within the framework of the experimental system the efficiency of the algorithm is evaluated, the boundaries of its practical application are determined.
Resumo:
The article presents an algorithm for translation the system, described by MSC document into Petri Net modulo strong bisimulation. Obtained net can be later used for determining various systems' properties. Example of correction error in original system with using if described algorithm presented.
Resumo:
In this paper an outliers resistant learning algorithm for the radial-basis-fuzzy-wavelet-neural network based on R. Welsh criterion is proposed. Suggested learning algorithm under consideration allows the signals processing in presence of significant noise level and outliers. The robust learning algorithm efficiency is investigated and confirmed by the number of experiments including medical applications.
Resumo:
Decision making and technical decision analysis demand computer-aided techniques and therefore more and more support by formal techniques. In recent years fuzzy decision analysis and related techniques gained importance as an efficient method for planning and optimization applications in fields like production planning, financial and economical modeling and forecasting or classification. It is also known, that the hierarchical modeling of the situation is one of the most popular modeling method. It is shown, how to use the fuzzy hierarchical model in complex with other methods of Multiple Criteria Decision Making. We propose a novel approach to overcome the inherent limitations of Hierarchical Methods by exploiting multiple criteria decision making.
Resumo:
The papers is dedicated to the questions of modeling and basing super-resolution measuring- calculating systems in the context of the conception “device + PC = new possibilities”. By the authors of the article the new mathematical method of solution of the multi-criteria optimization problems was developed. The method is based on physic-mathematical formalism of reduction of fuzzy disfigured measurements. It is shown, that determinative part is played by mathematical properties of physical models of the object, which is measured, surroundings, measuring components of measuring-calculating systems and theirs cooperation as well as the developed mathematical method of processing and interpretation of measurements problem solution.
Resumo:
In this paper a novel method for an application of digital image processing, Edge Detection is developed. The contemporary Fuzzy logic, a key concept of artificial intelligence helps to implement the fuzzy relative pixel value algorithms and helps to find and highlight all the edges associated with an image by checking the relative pixel values and thus provides an algorithm to abridge the concepts of digital image processing and artificial intelligence. Exhaustive scanning of an image using the windowing technique takes place which is subjected to a set of fuzzy conditions for the comparison of pixel values with adjacent pixels to check the pixel magnitude gradient in the window. After the testing of fuzzy conditions the appropriate values are allocated to the pixels in the window under testing to provide an image highlighted with all the associated edges.
Resumo:
Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace transform. It is shown that synapse functioning can be easily modeled by a second order damped response unit. Spiking neuron soma is presented as a threshold detection unit. Thus, the proposed fuzzy spiking neural network is an analog-digital nonlinear pulse-position dynamic system. It is demonstrated how fuzzy probabilistic and possibilistic clustering approaches can be implemented on the base of the presented spiking neural network.
Resumo:
In the paper learning algorithm for adjusting weight coefficients of the Cascade Neo-Fuzzy Neural Network (CNFNN) in sequential mode is introduced. Concerned architecture has the similar structure with the Cascade-Correlation Learning Architecture proposed by S.E. Fahlman and C. Lebiere, but differs from it in type of artificial neurons. CNFNN consists of neo-fuzzy neurons, which can be adjusted using high-speed linear learning procedures. Proposed CNFNN is characterized by high learning rate, low size of learning sample and its operations can be described by fuzzy linguistic “if-then” rules providing “transparency” of received results, as compared with conventional neural networks. Using of online learning algorithm allows to process input data sequentially in real time mode.
Resumo:
This work shows an application of a generalized approach for constructing dilation-erosion adjunctions on fuzzy sets. More precisely, operations on fuzzy quantities and fuzzy numbers are considered. By the generalized approach an analogy with the well known interval computations could be drawn and thus we can define outer and inner operations on fuzzy objects. These operations are found to be useful in the control of bioprocesses, ecology and other domains where data uncertainties exist.
Resumo:
Fuzzy data envelopment analysis (DEA) models emerge as another class of DEA models to account for imprecise inputs and outputs for decision making units (DMUs). Although several approaches for solving fuzzy DEA models have been developed, there are some drawbacks, ranging from the inability to provide satisfactory discrimination power to simplistic numerical examples that handles only triangular fuzzy numbers or symmetrical fuzzy numbers. To address these drawbacks, this paper proposes using the concept of expected value in generalized DEA (GDEA) model. This allows the unification of three models - fuzzy expected CCR, fuzzy expected BCC, and fuzzy expected FDH models - and the ability of these models to handle both symmetrical and asymmetrical fuzzy numbers. We also explored the role of fuzzy GDEA model as a ranking method and compared it to existing super-efficiency evaluation models. Our proposed model is always feasible, while infeasibility problems remain in certain cases under existing super-efficiency models. In order to illustrate the performance of the proposed method, it is first tested using two established numerical examples and compared with the results obtained from alternative methods. A third example on energy dependency among 23 European Union (EU) member countries is further used to validate and describe the efficacy of our approach under asymmetric fuzzy numbers.