946 resultados para Fundamentals in linear algebra
Resumo:
Interaction effect is an important scientific interest for many areas of research. Common approach for investigating the interaction effect of two continuous covariates on a response variable is through a cross-product term in multiple linear regression. In epidemiological studies, the two-way analysis of variance (ANOVA) type of method has also been utilized to examine the interaction effect by replacing the continuous covariates with their discretized levels. However, the implications of model assumptions of either approach have not been examined and the statistical validation has only focused on the general method, not specifically for the interaction effect.^ In this dissertation, we investigated the validity of both approaches based on the mathematical assumptions for non-skewed data. We showed that linear regression may not be an appropriate model when the interaction effect exists because it implies a highly skewed distribution for the response variable. We also showed that the normality and constant variance assumptions required by ANOVA are not satisfied in the model where the continuous covariates are replaced with their discretized levels. Therefore, naïve application of ANOVA method may lead to an incorrect conclusion. ^ Given the problems identified above, we proposed a novel method modifying from the traditional ANOVA approach to rigorously evaluate the interaction effect. The analytical expression of the interaction effect was derived based on the conditional distribution of the response variable given the discretized continuous covariates. A testing procedure that combines the p-values from each level of the discretized covariates was developed to test the overall significance of the interaction effect. According to the simulation study, the proposed method is more powerful then the least squares regression and the ANOVA method in detecting the interaction effect when data comes from a trivariate normal distribution. The proposed method was applied to a dataset from the National Institute of Neurological Disorders and Stroke (NINDS) tissue plasminogen activator (t-PA) stroke trial, and baseline age-by-weight interaction effect was found significant in predicting the change from baseline in NIHSS at Month-3 among patients received t-PA therapy.^
Resumo:
Hierarchical linear growth model (HLGM), as a flexible and powerful analytic method, has played an increased important role in psychology, public health and medical sciences in recent decades. Mostly, researchers who conduct HLGM are interested in the treatment effect on individual trajectories, which can be indicated by the cross-level interaction effects. However, the statistical hypothesis test for the effect of cross-level interaction in HLGM only show us whether there is a significant group difference in the average rate of change, rate of acceleration or higher polynomial effect; it fails to convey information about the magnitude of the difference between the group trajectories at specific time point. Thus, reporting and interpreting effect sizes have been increased emphases in HLGM in recent years, due to the limitations and increased criticisms for statistical hypothesis testing. However, most researchers fail to report these model-implied effect sizes for group trajectories comparison and their corresponding confidence intervals in HLGM analysis, since lack of appropriate and standard functions to estimate effect sizes associated with the model-implied difference between grouping trajectories in HLGM, and also lack of computing packages in the popular statistical software to automatically calculate them. ^ The present project is the first to establish the appropriate computing functions to assess the standard difference between grouping trajectories in HLGM. We proposed the two functions to estimate effect sizes on model-based grouping trajectories difference at specific time, we also suggested the robust effect sizes to reduce the bias of estimated effect sizes. Then, we applied the proposed functions to estimate the population effect sizes (d ) and robust effect sizes (du) on the cross-level interaction in HLGM by using the three simulated datasets, and also we compared the three methods of constructing confidence intervals around d and du recommended the best one for application. At the end, we constructed 95% confidence intervals with the suitable method for the effect sizes what we obtained with the three simulated datasets. ^ The effect sizes between grouping trajectories for the three simulated longitudinal datasets indicated that even though the statistical hypothesis test shows no significant difference between grouping trajectories, effect sizes between these grouping trajectories can still be large at some time points. Therefore, effect sizes between grouping trajectories in HLGM analysis provide us additional and meaningful information to assess group effect on individual trajectories. In addition, we also compared the three methods to construct 95% confident intervals around corresponding effect sizes in this project, which handled with the uncertainty of effect sizes to population parameter. We suggested the noncentral t-distribution based method when the assumptions held, and the bootstrap bias-corrected and accelerated method when the assumptions are not met.^
Resumo:
In a strategic trade policy, it is assumed, in this paper, that a government changes disbursement or levy method so that the reaction function of home firm approaches infinitely close to that of foreign firm. In the framework of Bertrand-Nash equilibrium, Eaton and Grossman[1986] showed that export tax is preferable to export subsidy. In this paper, it is shown that export subsidy is preferable to export tax in some cases in the framework of Bertrand-Nash equilibrium, considering the uncertainty in demand. Historically, many economists mentioned non-linear subsidy or tax. However, optimum solution of it has not yet been shown. The optimum solution is shown in this paper.
Resumo:
IP Multimedia Subsystem (IMS) is considered to provide multimedia services to users through an IP-based control plane. The current IMS service invocation mechanism, however, requires the Serving-Call Session Control Function (S-CSCF) invokes each Application Server (AS) sequentially to perform service subscription pro?le, which results in the heavy load of the S-CSCF and the long session set-up delay. To solve this issue, this paper proposes a linear chained service invocation mechanism to invoke each AS consecutively. By checking all the initial Filter Criteria (iFC) one-time and adding the addresses of all involved ASs to the ?Route? header, this new approach enables multiple services to be invoked as a linear chain during a session. We model the service invocation mechanisms through Jackson networks, which are validated through simulations. The analytic results verify that the linear chained service invocation mechanism can effectively reduce session set-up delay of the service layer and decrease the load level of the S-CSCF
Resumo:
Sequential estimation of the success probability p in inverse binomial sampling is considered in this paper. For any estimator pˆ , its quality is measured by the risk associated with normalized loss functions of linear-linear or inverse-linear form. These functions are possibly asymmetric, with arbitrary slope parameters a and b for pˆ
p , respectively. Interest in these functions is motivated by their significance and potential uses, which are briefly discussed. Estimators are given for which the risk has an asymptotic value as p→0, and which guarantee that, for any p∈(0,1), the risk is lower than its asymptotic value. This allows selecting the required number of successes, r, to meet a prescribed quality irrespective of the unknown p. In addition, the proposed estimators are shown to be approximately minimax when a/b does not deviate too much from 1, and asymptotically minimax as r→∞ when a=b.
Resumo:
A unified solution framework is presented for one-, two- or three-dimensional complex non-symmetric eigenvalue problems, respectively governing linear modal instability of incompressible fluid flows in rectangular domains having two, one or no homogeneous spatial directions. The solution algorithm is based on subspace iteration in which the spatial discretization matrix is formed, stored and inverted serially. Results delivered by spectral collocation based on the Chebyshev-Gauss-Lobatto (CGL) points and a suite of high-order finite-difference methods comprising the previously employed for this type of work Dispersion-Relation-Preserving (DRP) and Padé finite-difference schemes, as well as the Summationby- parts (SBP) and the new high-order finite-difference scheme of order q (FD-q) have been compared from the point of view of accuracy and efficiency in standard validation cases of temporal local and BiGlobal linear instability. The FD-q method has been found to significantly outperform all other finite difference schemes in solving classic linear local, BiGlobal, and TriGlobal eigenvalue problems, as regards both memory and CPU time requirements. Results shown in the present study disprove the paradigm that spectral methods are superior to finite difference methods in terms of computational cost, at equal accuracy, FD-q spatial discretization delivering a speedup of ð (10 4). Consequently, accurate solutions of the three-dimensional (TriGlobal) eigenvalue problems may be solved on typical desktop computers with modest computational effort.