817 resultados para Funcions de Lagrange
Resumo:
Athenaeum has both the Prony cahier 7-8 and the Lagrange/Laplace cahier 7-8 which is designated tome II on t.p.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"Liste des ouvrages de M. Lagrange, communiquée par M. Lacroix": v. 2, p. [372]-378.
Resumo:
Mode of access: Internet.
Resumo:
"Notice sur la vie et les ouvrages de ... Lagrange par M. Delambre"; t. 1, introduction pages 9-51.
Resumo:
Mode of access: Internet.
Resumo:
[Full name: Charles Françoise Maximilien Marie]
Resumo:
Tr. of:Physiologie des exercices du corps.
Resumo:
Includes bibliographical references.
Resumo:
"1040" inscribed on the verso of the front fly-leaf, volumes 1 & 2.
Resumo:
Previous research on computers and graphics calculators in mathematics education has examined effects on curriculum content and students’ mathematical achievement and attitudes while less attention has been given to the relationship between technology use and issues of pedagogy, in particular the impact on teachers’ professional learning in specific classroom and school environments. This observation is critical in the current context of educational policy making, where it is assumed – often incorrectly – that supplying schools with hardware and software will increase teachers’ use of technology and encourage more innovative teaching approaches. This paper reports on a research program that aimed to develop better understanding of how and under what conditions Australian secondary school mathematics teachers learn to effectively integrate technology into their practice. The research adapted Valsiner’s concepts of the Zone of Proximal Development, Zone of Free Movement and Zone of Promoted Action to devise a theoretical framework for analysing relationships between factors influencing teachers’ use of technology in mathematics classrooms. This paper illustrates how the framework may be used by analysing case studies of a novice teacher and an experienced teacher in different school settings.
Resumo:
A method has been constructed for the solution of a wide range of chemical plant simulation models including differential equations and optimization. Double orthogonal collocation on finite elements is applied to convert the model into an NLP problem that is solved either by the VF 13AD package based on successive quadratic programming, or by the GRG2 package, based on the generalized reduced gradient method. This approach is termed simultaneous optimization and solution strategy. The objective functional can contain integral terms. The state and control variables can have time delays. Equalities and inequalities containing state and control variables can be included into the model as well as algebraic equations and inequalities. The maximum number of independent variables is 2. Problems containing 3 independent variables can be transformed into problems having 2 independent variables using finite differencing. The maximum number of NLP variables and constraints is 1500. The method is also suitable for solving ordinary and partial differential equations. The state functions are approximated by a linear combination of Lagrange interpolation polynomials. The control function can either be approximated by a linear combination of Lagrange interpolation polynomials or by a piecewise constant function over finite elements. The number of internal collocation points can vary by finite elements. The residual error is evaluated at arbitrarily chosen equidistant grid-points, thus enabling the user to check the accuracy of the solution between collocation points, where the solution is exact. The solution functions can be tabulated. There is an option to use control vector parameterization to solve optimization problems containing initial value ordinary differential equations. When there are many differential equations or the upper integration limit should be selected optimally then this approach should be used. The portability of the package has been addressed converting the package from V AX FORTRAN 77 into IBM PC FORTRAN 77 and into SUN SPARC 2000 FORTRAN 77. Computer runs have shown that the method can reproduce optimization problems published in the literature. The GRG2 and the VF I 3AD packages, integrated into the optimization package, proved to be robust and reliable. The package contains an executive module, a module performing control vector parameterization and 2 nonlinear problem solver modules, GRG2 and VF I 3AD. There is a stand-alone module that converts the differential-algebraic optimization problem into a nonlinear programming problem.