950 resultados para Frugivore Traits


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patterns of increasing leaf mass per area (LMA), area-based leaf nitrogen (Narea), and carbon isotope composition (δ13C) with increasing height in the canopy have been attributed to light gradients or hydraulic limitation in tall trees. Theoretical optimal distributions of LMA and Narea that scale with light maximize canopy photosynthesis; however, sub-optimal distributions are often observed due to hydraulic constraints on leaf development. Using observational, experimental, and modeling approaches, we investigated the response of leaf functional traits (LMA, density, thickness, and leaf nitrogen), leaf carbon isotope composition (δ13C), and cellular structure to light availability, height, and leaf water potential (Ψl) in an Acer saccharum forest to tease apart the influence of light and hydraulic limitations. LMA, leaf and palisade layer thickness, and leaf density were greater at greater light availability but similar heights, highlighting the strong control of light on leaf morphology and cellular structure. Experimental shading decreased both LMA and area-based leaf nitrogen (Narea) and revealed that LMA and Narea were more strongly correlated with height earlier in the growing season and with light later in the growing season. The supply of CO2 to leaves at higher heights appeared to be constrained by stomatal sensitivity to vapor pressure deficit (VPD) or midday leaf water potential, as indicated by increasing δ13C and VPD and decreasing midday Ψl with height. Model simulations showed that daily canopy photosynthesis was biased during the early growing season when seasonality was not accounted for, and was biased throughout the growing season when vertical gradients in LMA and Narea were not accounted for. Overall, our results suggest that leaves acclimate to light soon after leaf expansion, through an accumulation of leaf carbon, thickening of palisade layers and increased LMA, and reduction in stomatal sensitivity to Ψl or VPD. This period of light acclimation in leaves appears to optimize leaf function over time, despite height-related constraints early in the growing season. Our results imply that vertical gradients in leaf functional traits and leaf acclimation to light should be incorporated in canopy function models in order to refine estimates of canopy photosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most studies on selection in plants estimate female fitness components and neglect male mating success, although the latter might also be fundamental to understand adaptive evolution. Information from molecular genetic markers can be used to assess determinants of male mating success through parentage analyses. We estimated paternal selection gradients on floral traits in a large natural population of the herb Mimulus guttatus using a paternity probability model and maximum likelihood methods. This analysis revealed more significant selection gradients than a previous analysis based on regression of estimated male fertilities on floral traits. There were differences between results of univariate and multivariate analyses most likely due to the underlying covariance structure of the traits. Multivariate analysis, which corrects for the covariance structure of the traits, indicated that male mating success declined with distance from and depended on the direction to the mother plants. Moreover, there was directional selection for plants with fewer open flowers which have smaller corollas, a smaller anther-stigma separation, more red dots on the corolla and a larger fluctuating asymmetry therein. For most of these traits, however, there was also stabilizing selection indicating that there are intermediate optima for these traits. The large number of significant selection gradients in this study shows that even in relatively large natural populations where not all males can be sampled, it is possible to detect significant paternal selection gradients, and that such studies can give us valuable information required to better understand adaptive plant evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-natural grasslands, biodiversity hotspots in Central-Europe, suffer from the cessation of traditional land-use. Amount and intensity of these changes challenge current monitoring frameworks typically based on classic indicators such as selected target species or diversity indices. Indicators based on plant functional traits provide an interesting extension since they reflect ecological strategies at individual and ecological processes at community levels. They typically show convergent responses to gradients of land-use intensity over scales and regions, are more directly related to environmental drivers than diversity components themselves and enable detecting directional changes in whole community dynamics. However, probably due to their labor- and cost intensive assessment in the field, they have been rarely applied as indicators so far. Here we suggest overcoming these limitations by calculating indicators with plant traits derived from online accessible databases. Aiming to provide a minimal trait set to monitor effects of land-use intensification on plant diversity we investigated relationships between 12 community mean traits, 2 diversity indices and 6 predictors of land-use intensity within grassland communities of 3 different regions in Germany (part of the German ‘Biodiversity Exploratory’ research network). By standardization of traits and diversity measures, use of null models and linear mixed models we confirmed (i) strong links between functional community composition and plant diversity, (ii) that traits are closely related to land-use intensity, and (iii) that functional indicators are equally, or even more sensitive to land-use intensity than traditional diversity indices. The deduced trait set consisted of 5 traits, i.e., specific leaf area (SLA), leaf dry matter content (LDMC), seed release height, leaf distribution, and onset of flowering. These database derived traits enable the early detection of changes in community structure indicative for future diversity loss. As an addition to current monitoring measures they allow to better link environmental drivers to processes controlling community dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence that species can evolve rapidly in response to environmental change. However, although land use is one of the key drivers of current environmental change, studies of its evolutionary consequences are still fairly scarce, in particular studies that examine land-use effects across large numbers of populations, and discriminate between different aspects of land use. Here, we investigated genetic differentiation in relation to land use in the annual grass Bromus hordeaceus. A common garden study with offspring from 51 populations from three regions and a broad range of land-use types and intensities showed that there was indeed systematic population differentiation of ecologically important plant traits in relation to land use, in particular due to increasing mowing and grazing intensities. We also found strong land-use-related genetic differentiation in plant phenology, where the onset of flowering consistently shifted away from the typical time of management. In addition, increased grazing intensity significantly increased the genetic variability within populations. Our study suggests that land use can cause considerable genetic differentiation among plant populations, and that the timing of land use may select for phenological escape strategies, particularly in monocarpic plant species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The improvement of meat quality and production traits has high priority in the pork industry. Many of these traits show a low to moderate heritability and are difficult and expensive to measure. Their improvement by targeted breeding programs is challenging and requires knowledge of the genetic and molecular background. For this study we genotyped 192 artificial insemination boars of a commercial line derived from the Swiss Large White breed using the PorcineSNP60 BeadChip with 62,163 evenly spaced SNPs across the pig genome. We obtained 26 estimated breeding values (EBVs) for various traits including exterior, meat quality, reproduction, and production. The subsequent genome-wide association analysis allowed us to identify four QTL with suggestive significance for three of these traits (p-values ranging from 4.99×10⁻⁶ to 2.73×10⁻⁵). Single QTL for the EBVs pH one hour post mortem (pH1) and carcass length were on pig chromosome (SSC) 14 and SSC 2, respectively. Two QTL for the EBV rear view hind legs were on SSC 10 and SSC 16.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an F(ST)-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Species coexistence has been a fundamental issue to understand ecosystem functioning since the beginnings of ecology as a science. The search of a reliable and all-encompassing explanation for this issue has become a complex goal with several apparently opposing trends. On the other side, seemingly unconnected with species coexistence, an ecological state equation based on the inverse correlation between an indicator of dispersal that fits gamma distribution and species diversity has been recently developed. This article explores two factors, whose effects are inconspicuous in such an equation at the first sight, that are used to develop an alternative general theoretical background in order to provide a better understanding of species coexistence. Our main outcomes are: (i) the fit of dispersal and diversity values to gamma distribution is an important factor that promotes species coexistence mainly due to the right-skewed character of gamma distribution; (ii) the opposite correlation between species diversity and dispersal implies that any increase of diversity is equivalent to a route of “ecological cooling” whose maximum limit should be constrained by the influence of the third law of thermodynamics; this is in agreement with the well-known asymptotic trend of diversity values in space and time; (iii) there are plausible empirical and theoretical ways to apply physical principles to explain important ecological processes; (iv) the gap between theoretical and empirical ecology in those cases where species diversity is paradoxically high could be narrowed by a wave model of species coexistence based on the concurrency of local equilibrium states. In such a model, competitive exclusion has a limited but indispensable role in harmonious coexistence with functional redundancy. We analyze several literature references as well as ecological and evolutionary examples that support our approach, reinforcing the meaning equivalence between important physical and ecological principles.