839 resultados para Friction and wear


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Erosive tooth wear is the irreversible loss of dental hard tissue as a result of chemical processes. When the surface of a tooth is attacked by acids, the resulting loss of structural integrity leaves a softened layer on the tooth's surface, which renders it vulnerable to abrasive forces. The authors' objective was to estimate the prevalence of erosive tooth wear and to identify associated factors in a sample of 14- to 19-year-old adolescents in Mexico. METHODS The authors performed a cross-sectional study on a convenience sample (N = 417) of adolescents in a school in Mexico City, Mexico. The authors used a questionnaire and an oral examination performed according to the Lussi index. RESULTS The prevalence of erosive tooth wear was 31.7% (10.8% with exposed dentin). The final logistic regression model included age (P < .01; odds ratio [OR], 1.64; 95% confidence interval [CI], 1.26-2.13), high intake of sweet carbonated drinks (P = .03; OR, 1.81; 95% CI, 1.06-3.07), and xerostomia (P = .04; OR, 2.31; 95% CI, 1.05-5.09). CONCLUSIONS Erosive tooth wear, mainly on the mandibular first molars, was associated with age, high intake of sweet carbonated drinks, and xerostomia. PRACTICAL IMPLICATIONS Knowledge regarding erosive tooth wear in adolescents with relatively few years of exposure to causal factors will increase the focus on effective preventive measures, the identification of people at high risk, and early treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to determine the prevalence and possible etiological factors of erosive tooth wear and wedge-shaped defects in Swiss Army recruits and compare the findings with those of an analogous study conducted in 1996. In 2006, 621 recruits between 18 and 25 years of age (1996: 417 recruits; ages 19 to 25) were examined for erosive tooth wear and wedge-shaped defects. Additional data was acquired using a questionnaire about personal details, education, dentitions subjective condition, oral hygiene, eating and drinking habits, medications used, and general medical problems. In 2006, 60.1% of those examined exhibited occlusal erosive tooth wear not involving the dentin (1996: 82.0%) and 23.0% involving the dentin (1996: 30.7%). Vestibular erosive tooth wear without dentin involvement was seen in 7.7% in 2006 vs. 14.4% in 1996. Vestibular erosive tooth wear with dentin involvement was rare in both years (0.5%). Oral erosive tooth wear lacking exposed dentin was also rare in those years, although more teeth were affected in 2006 (2.1%) than in 1996 (0.7%). The examinations in 2006 found one or more initial wedge-shaped lesions in 8.5% of the recruits, while 20.4% of the study participants exhibited such in 1996. In 1996, 53% consumed acidic foods and beverages more than 5 times/day; in 2006, 83.9% did so. In neither study did multivariate regression analyses show any significant correlations between occurrence and location of erosive tooth wear and wedge-shaped defects and various other parameters, e.g., eating and hygiene habits, or dentin hyper-sensitivity. Despite a significant increase in consumption of acidic products between 1996 and 2006, the latter study found both fewer erosive tooth wear and fewer wedge-shaped defects (i.e., fewer non-carious lesions.).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reinforcement inclusions have been advocated to alleviate wear, compaction, and unstable surfaces in sports fields, but little research on the effects of these materials has been conducted in the USA. Experiments were established on a native silt loam and a sand rootzone matrix, seeded with a Kentucky bluegrass (Poa pratensis L.) blend, at the Joseph Troll Turf Research Center, University of Massachusetts, Amherst, USA to determine the effects of reinforcement inclusions on wear, surface hardness, traction, ball roll, ball bounce resilience, water infiltration rate, soil bulk density, air porosity, total porosity, and root weights. Three types of reinforcement inclusions (Sportgrass, Netlon, Turfgrids) were tested along with a non-reinforced control in a three year study. The treatments were set out in a randomized complete block design with four replications in both soils. No inclusion provided less wear or greater infiltration or air-filled porosity relative to the control. Reinforcement inclusions showed significant differences, however, in surface hardness, traction, and ball roll relative to the control, although this varied with the time of year. Infiltration rates, airfilled porosity, total pore space, bulk density, hardness, traction, ball roll, and ball rebound were greater on the sand rootzone than on the silt loam. Significant correlations were present between soil bulk density, surface hardness, traction, and ball roll. Based on our study, the use of reinforcement inclusions to provide better wear tolerance for sand or native soil athletic fields is not warranted. Certain playing surface characteristics, however, may be slightly improved with the use of reinforcement inclusions. The use of sands for sports surfaces is justified based upon the improvement in playing quality characteristics and soil physical properties important to a good playing surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Permeability measured on three samples in a triaxial cell under effective confining pressure from 0.2 to 2.5 MPa ranges from 10**-18 to 10**-19 m**2. Overall, results indicate that permeability decreases with effective confining pressure up to 1.5 MPa; however, measurements at low effective pressure are too dispersed to yield a precise general relationship between permeability and pressure. When the effective pressure is increased from 1.5 to 2.5 MPa, permeability is roughly constant (~1-4 x 10**-19 m**2). Samples deformed in the triaxial cell developed slickenlined fractures, and permeability measurements were performed before and after failure. A permeability increase is observed when the sample fails under low effective confining pressure (0.2 MPa), but not under effective pressure corresponding to the overburden stress. Under isotropic stress conditions, permeability decrease related to fracture closure occurs at a relatively high effective pressure of ~1.5 MPa. Coefficients of friction on the fractures formed in the triaxial cell are ~0.4.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Slowslip forms part of the spectrum of fault behaviour between stable creep and destructive earthquakes. Slow slip occurs near the boundaries of large earthquake rupture zones and may sometimes trigger fast earthquakes. It is thought to occur in faults comprised of rocks that strengthen under fast slip rates, preventing rupture as a normal earthquake, or on faults that have elevated pore-fluid pressures. However, the processes that control slow rupture and the relationship between slow and normal earthquakes are enigmatic. Here we use laboratory experiments to simulate faulting in natural rock samples taken from shallow parts of the Nankai subduction zone, Japan, where very low-frequency earthquakes - a form of slow slip - have been observed.We find that the fault rocks exhibit decreasing strength over millimetre-scale slip distances rather than weakening due to increasing velocity. However, the sizes of the slip nucleation patches in our laboratory simulations are similar to those expected for the very lowfrequency earthquakes observed in Nankai. We therefore suggest that this type of fault-weakening behaviour may generate slow earthquakes. Owing to the similarity between the expected behaviour of slow earthquakes based on our data, and that of normal earthquakes during nucleation, we suggest that some types of slow slip may represent prematurely arrested earthquakes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper presents a consistent set of results showing the ability of Laser Shock Processing (LSP) in modifying the overall properties of the Friction Stir Welded (FSW) joints made of AA 2024-T351. Based on laser beam intensities above 109 W/cm2 with pulse energies of several Joules and pulses durations of nanoseconds, LSP is able of inducing a compression residual stress field, improving the wear and fatigue resistance by slowing crack propagation and stress corrosion cracking, but also improving the overall behaviour of the structure. After the FSW and LSP procedures are briefly presented, the results of micro-hardness measurements and of transverse tensile tests, together with the corrosion resistance of the native joints vs. LSP treated are discussed. The ability of LSP to generate compressive residual stresses and to improve the behaviour of the FSW joints is underscored.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rheological and tribological properties of single-walled carbon nanotube (SWCNT)-reinforced poly(phenylene sulphide) (PPS) and poly(ether ether ketone) (PEEK) nanocomposites prepared via melt-extrusion were investigated. The effectiveness of employing a dual-nanofiller strategy combining polyetherimide (PEI)-wrapped SWCNTs with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles for property enhancement of the resulting hybrid composites was evaluated. Viscoelastic measurements revealed that the complex viscosity ?, storage modulus G?, and loss modulus G? increased with SWCNT content. In the low-frequency region, G? and G? became almost independent of frequency at higher SWCNT loadings, suggesting a transition from liquid-like to solid-like behavior. The incorporation of increasing IF-WS2 contents led to a progressive drop in ? and G? due to a lubricant effect. PEEK nanocomposites showed lower percolation threshold than those based on PPS, ascribed to an improved SWCNT dispersion due to the higher affinity between PEI and PEEK. The SWCNTs significantly lowered the wear rate but only slightly reduced the coefficient of friction. Composites with both nanofillers exhibited improved wear behavior, attributed to the outstanding tribological properties of these nanoparticles and a synergistic reinforcement effect. The combination of SWCNTs with IF-WS2 is a promising route for improving the tribological and rheological performance of thermoplastic nanocomposites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Novel poly(phenylene sulphide) (PPS) nanocomposites reinforced with an aminated derivative (PPS-NH2) covalently attached to acid-treated single-walled carbon nanotubes (SWCNTs) were prepared via simple melt-blending technique. Their morphology, viscoelastic behaviour, electrical conductivity, mechanical and tribological properties were investigated. Scanning electron microscopy revealed that the grafting process was effective in uniformly dispersing the SWCNTs within the matrix. The storage and loss moduli as a function of frequency increased with the SWCNT content, tending to a plateau in the low-frequency regime. The electrical conductivity of the nanocomposites was considerably enhanced in the range 0.1?0.5 wt% SWCNTs; electrical and rheological percolation thresholds occurred at similar nanotube concentrations. Mechanical tests demonstrated that with only 1.0 wt% SWCNTs the Young's modulus and tensile strength of the matrix improved by 51 and 37%, respectively, without decrement in toughness, ascribed to a very efficient load transfer. A moderate decrease in the friction coefficient and a 75% reduction in wear rate were found for the abovementioned nanotube loading, indicating that PPS-NH2-g-SWCNTs are good tribological additives for thermoplastic polymers. Based on the promising results obtained in this work, it is expected that these nanofillers will be used to develop high-performance thermoplastic/CNT nanocomposites for structural applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on laser beam intensities above 109 W/cm2 with pulse energy of several Joules and duration of nanoseconds, Laser Shock Processing (LSP) is capable of inducing a surface compressive residual stress field. The paper presents experimental results showing the ability of LSP to improve the mechanical strength and cracking resistance of AA2024-T351 friction stir welded (FSW) joints. After introducing the FSW and LSP procedures, the results of microstructural analysis and micro-hardness are discussed. Video Image Correlation was used to measure the displacement and strain fields produced during tensile testing of flat specimens; the local and overall tensile behavior of native FSW joints vs. LSP treated were analyzed. Further, results of slow strain rate tensile testing of the FSW joints, native and LSP treated, performed in 3.5% NaCl solution are presented. The ability of LSP to improve the structural behavior of the FSW joints is underscored.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is now an emerging need for an efficient modeling strategy to develop a new generation of monitoring systems. One method of approaching the modeling of complex processes is to obtain a global model. It should be able to capture the basic or general behavior of the system, by means of a linear or quadratic regression, and then superimpose a local model on it that can capture the localized nonlinearities of the system. In this paper, a novel method based on a hybrid incremental modeling approach is designed and applied for tool wear detection in turning processes. It involves a two-step iterative process that combines a global model with a local model to take advantage of their underlying, complementary capacities. Thus, the first step constructs a global model using a least squares regression. A local model using the fuzzy k-nearest-neighbors smoothing algorithm is obtained in the second step. A comparative study then demonstrates that the hybrid incremental model provides better error-based performance indices for detecting tool wear than a transductive neurofuzzy model and an inductive neurofuzzy model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work describes an analytical approach to determine what degree of accuracy is required in the definition of the rail vehicle models used for dynamic simulations. This way it would be possible to know in advance how the results of simulations may be altered due to the existence of errors in the creation of rolling stock models, whilst also identifying their critical parameters. This would make it possible to maximize the time available to enhance dynamic analysis and focus efforts on factors that are strictly necessary.In particular, the parameters related both to the track quality and to the rolling contact were considered in this study. With this aim, a sensitivity analysis was performed to assess their influence on the vehicle dynamic behaviour. To do this, 72 dynamic simulations were performed modifying, one at a time, the track quality, the wheel-rail friction coefficient and the equivalent conicity of both new and worn wheels. Three values were assigned to each parameter, and two wear states were considered for each type of wheel, one for new wheels and another one for reprofiled wheels.After processing the results of these simulations, it was concluded that all the parameters considered show very high influence, though the friction coefficient shows the highest influence. Therefore, it is recommended to undertake any future simulation job with measured track geometry and track irregularities, measured wheel profiles and normative values of wheel-rail friction coefficient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present thesis is focused on the development of a thorough mathematical modelling and computational solution framework aimed at the numerical simulation of journal and sliding bearing systems operating under a wide range of lubrication regimes (mixed, elastohydrodynamic and full film lubrication regimes) and working conditions (static, quasi-static and transient conditions). The fluid flow effects have been considered in terms of the Isothermal Generalized Equation of the Mechanics of the Viscous Thin Films (Reynolds equation), along with the massconserving p-Ø Elrod-Adams cavitation model that accordingly ensures the so-called JFO complementary boundary conditions for fluid film rupture. The variation of the lubricant rheological properties due to the viscous-pressure (Barus and Roelands equations), viscous-shear-thinning (Eyring and Carreau-Yasuda equations) and density-pressure (Dowson-Higginson equation) relationships have also been taken into account in the overall modelling. Generic models have been derived for the aforementioned bearing components in order to enable their applications in general multibody dynamic systems (MDS), and by including the effects of angular misalignments, superficial geometric defects (form/waviness deviations, EHL deformations, etc.) and axial motion. The bearing exibility (conformal EHL) has been incorporated by means of FEM model reduction (or condensation) techniques. The macroscopic in fluence of the mixedlubrication phenomena have been included into the modelling by the stochastic Patir and Cheng average ow model and the Greenwood-Williamson/Greenwood-Tripp formulations for rough contacts. Furthermore, a deterministic mixed-lubrication model with inter-asperity cavitation has also been proposed for full-scale simulations in the microscopic (roughness) level. According to the extensive mathematical modelling background established, three significant contributions have been accomplished. Firstly, a general numerical solution for the Reynolds lubrication equation with the mass-conserving p - Ø cavitation model has been developed based on the hybridtype Element-Based Finite Volume Method (EbFVM). This new solution scheme allows solving lubrication problems with complex geometries to be discretized by unstructured grids. The numerical method was validated in agreement with several example cases from the literature, and further used in numerical experiments to explore its exibility in coping with irregular meshes for reducing the number of nodes required in the solution of textured sliding bearings. Secondly, novel robust partitioned techniques, namely: Fixed Point Gauss-Seidel Method (PGMF), Point Gauss-Seidel Method with Aitken Acceleration (PGMA) and Interface Quasi-Newton Method with Inverse Jacobian from Least-Squares approximation (IQN-ILS), commonly adopted for solving uid-structure interaction problems have been introduced in the context of tribological simulations, particularly for the coupled calculation of dynamic conformal EHL contacts. The performance of such partitioned methods was evaluated according to simulations of dynamically loaded connecting-rod big-end bearings of both heavy-duty and high-speed engines. Finally, the proposed deterministic mixed-lubrication modelling was applied to investigate the in fluence of the cylinder liner wear after a 100h dynamometer engine test on the hydrodynamic pressure generation and friction of Twin-Land Oil Control Rings.