778 resultados para Freundlich isotherms
Resumo:
The oil production in Brazil has been increasing each year. Consequently, increasing volumes of water produced are generated with large quantities of contaminants, which brings many problems in disposing of these waters. The concern that the concentrations of contaminants in water produced meet existing laws for disposal of effluents, has been extremely important for the development of different techniques for treatment of water produced. The study of clay minerals as adsorbents of organic contaminants has grown considerably so in order to combine the low cost with the efficiency of environmental preservation and health issues. Thus, this study aims to understand the characteristics of vermiculite clay, sodium bentonite, calcium bentonite and diatomite and evaluate their performance as adsorbents for phenol in the water produced. Through adsorption isotherms it was possible to observe the behavior of these adsorptive clay and diatomite for adsorption of phenol, the main phenolic compound found in water produced. Different concentrations of synthetic solutions of phenol were put in touch with these adsorbents under same conditions of agitation and temperature. The adsorbents were composted adsorptive favorable, but the vermiculite and diatomite showed little capacity for absorption, being suggested for absorbs small concentrations of phenol in the balance isothermal
Resumo:
Structure–activity relationships for 1 wt.% Pt catalysts were investigated for a series of TixCe(1−x)O2 (x = 1, 0.98, 0.9, 0.5, 0.2 and 0) supports prepared by the sol–gel method. The catalysts prepared by impregnation were characterized in detail by applying a wide range of techniques as N2-isotherms, XRF, XRD, Raman, XPS, H2-TPR, Drifts, UV–vis, etc. and tested in the preferential oxidation of CO in the presence of H2. Also several reaction conditions were deeply analyzed. A strong correlation between catalyst performance and the electronic properties let us to propose, based in all the experimental results, a plausible reaction mechanism where several redox cycles are involved.
Resumo:
Carbon monoliths with high densities are studied as adsorbents for the storage of H2, CH4, and CO2 at ambient temperature and high pressures. The starting monolith A3 (produced by ATMI Co.) was activated under a CO2 flow at 1073 K, applying different activation times up to 48 h. Micropore volumes and apparent surface areas were deduced from N2 and CO2 adsorption isotherms at 77 K and 273 K, respectively. CO2 and CH4 isotherms were measured up to 3 MPa and H2 up to 20 MPa. The BET surface area of the starting monolith (941 m2/g) could be significantly increased up to 1586 m2/g, and the developed porosity is almost exclusively comprised of micropores <1 nm. Total storage amounts take into account the compressed gas in the void space of the material, in addition to the adsorbed gas. Remarkably, high total storage amounts are reached for CO2 (482 g/L), CH4 (123 g/L), and H2 (18 g/L). These values are much higher than for other sorbents with similar surface areas, due to the high density of the starting monolith and of the activated ones, for which the density decreases only slightly (from 1.0 g/cm3 to 0.8 g /cm3 upon CO2 activation). The findings reveal the suitability of high density activated carbon monoliths for gas storage application. Thus, the amounts of stored gas can be increased by more than a 70 % in the case of H2 at 20 MPa, almost 5.5 times in the case of CH4 at 3 MPa, and more than 7.5 times in the case of CO2 at 3 MPa when adsorbents are used for gas storage under the investigated conditions rather than simple compression. Furthermore, the obtained results have been recently confirmed by a scale-up study in which 2.64 kg of high density monolith adsorbent was filled a tank cylinder of 2.5 L (Carbon, 76, 2014, 123).
Resumo:
The remediation of paracetamol (PA), an emerging contaminant frequently found in wastewater treatment plants, has been studied in the low concentration range (0.3–10 mg L−1) using as adsorbent a biomass-derived activated carbon. PA uptake of up to 100 mg g−1 over the activated carbon has been obtained, with the adsorption isotherms being fairly explained by the Langmuir model. The application of Reichemberg and the Vermeulen equations to the batch kinetics experiments allowed estimating homogeneous and heterogeneous diffusion coefficients, reflecting the dependence of diffusion with the surface coverage of PA. A series of rapid small-scale column tests were carried out to determine the breakthrough curves under different operational conditions (temperature, PA concentration, flow rate, bed length). The suitability of the proposed adsorbent for the remediation of PA in fixed-bed adsorption was proven by the high PA adsorption capacity along with the fast adsorption and the reduced height of the mass transfer zone of the columns. We have demonstrated that, thanks to the use of the heterogeneous diffusion coefficient, the proposed mathematical approach for the numerical solution to the mass balance of the column provides a reliable description of the breakthrough profiles and the design parameters, being much more accurate than models based in the classical linear driving force.
Resumo:
Purpose: To investigate the interaction between quinine and Garcinia kola using an in vitro adsorption study. Methods: In vitro interaction between quinine and G. kola was conducted at 37 ± 0.1 °C. Adsorption of quinine (2.5 - 40 μg/ml) to 2.5 % w/v G. kola suspension was studied. Thereafter, quinine desorption process was investigated. The amount of quinine adsorbed and desorbed was quantified using HPLC. A Freundlich isotherm was constructed to describe the resulting data and percentage of quinine desorbed was determined from the desorption data. Results: An adsorption isotherm of the data gave a Freundlich constant (K) of 52.66 μg/g, with a slope of 0.69 indicating a high capacity and affinity of G. kola to adsorb quinine at a concentration smaller than 2.41 μg/g of G. kola. However the adsorptive capacity of G. kola for quinine at 37 ± 0.1 °C appears to be a saturable process as observed from the isotherm. Quinine desorption from G. kola peaked at 1 hour (37.51 %) and decreased to a constant amount (about 35 %) over the remaining sampling time. Conclusion: Quinine is adsorbed on G. kola in vitro. This suggests that concurrent administration of quinine and G. kola should be avoided, to prevent potential drug interaction and decreased drug bioavailability.
Resumo:
The production of synthesis gas has received renewed attention due to demand for renewable energies to reduce the emissions of gases responsible for enhanced greenhouse effect. This work was carried out in order to synthesize, characterize and evaluate the implementation of nickel catalysts on MCM-41 in dry reforming reactions of methane. The mesoporous molecular sieves were synthesized using as silica sources the tetraethyl orthosilicate (TEOS) and residual glass powder (PV). The sieves were impregnated with 10% nickel to obtain the metallic catalysts (Ni/MCM-41). These materials were calcined and characterized by Thermogravimetric Analysis (TG), Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Temperature-Programmed Reduction (TPR) and N2 Adsorption/Desorption isotherms (BET/BJH). The catalytic properties of the samples were evaluated in methane dry reforming with CO2 in order to produce synthesis gas to be used in the petrochemical industry. The materials characterized showed hexagonal structure characteristic of mesoporous material MCM-41 type, being maintained after impregnation with nickel. The samples presented variations in the specific surface area, average volume and diameter of pores based on the type of interaction between the nickel and the mesoporous support. The result of the the catalytic tests showed conversions about 91% CO2, 86% CH4, yelds about 85% CO and 81% H2 to Ni/MCM-41_TEOS_C, and conversions about 87% CO2, 82% CH4, yelds about 70% CO and 59% H2 to Ni/MCM-41_PV_C. The similar performance confirms that the TEOS can be replaced by a less noble materials
Resumo:
Biomass is the world’s most important renewable carbon source, whose major component, carbohydrates, can be valorized by transformation into biofuels and high value-added chemicals. Among the latter, 5-hydroxymethylfurfural (HMF), obtained by C6 carbohydrates dehydration, is a versatile and key intermediate for the production of a large spectrum of biobased chemicals. Different catalytic systems have been evaluated for HMF production, mostly based on heterogeneous catalysis as alternative to the use of conventional mineral acids [1]. Moreover, niobium oxide has shown interesting properties as acid catalyst for dehydration of sugars [2-3]. On the other hand, the high surface area and large pore size of mesoporous solids make them suitable for many catalytic processes. In the present work, the dehydration of glucose to HMF has been evaluated by using different mesoporous mixed Nb2O5-ZrO2 in a biphasic water–Methyl Isobutyl Ketone (MIBK) solvent system to avoid the HMF degradation. Different experimental parameters, such as reaction temperature and time, as well as the addition of CaCl2 have been studied in order to maximize the HMF yield.N2 adsorption-desorption isotherms have corroborated the mesostructured character of catalysts, being all isotherms of Type IV according to the IUPAC classification. BET surface area decreases for catalysts with higher Zr content (Table 1). Likewise, pore volume and average pore diameter values diminish after Zr incorporation. Concerning the acid properties, a clear correlation between Nb and acidity can be observed, in such a way that total acidity, as deduced from NH3-TPD, decreases when the Zr content rises, and consequently the amount of Nb is reduced.These mesoporous Nb-Zr catalysts have been tested in the dehydration of glucose to HMF at 175 ºC under batch operation in aqueous solution, using MIBK as co-solvent. It can be observed that both glucose conversion and HMF yield increase with the Nb content, being maximum (90% and 36%, respectively) after 90 minutes for Nb2O5. This trend changes when CaCl2 is added to the reaction medium, improving the catalytic performance of mixed oxides and ZrO2, but Nb2O5 maintains similar results than without salt addition. This could be justified by the interaction between CaCl2 and Lewis acid sites, since zirconium oxide possesses a higher amount of this acid sites type.
Resumo:
Water sorption-induced crystallization, α-relaxations and relaxation times of freeze-dried lactose/whey protein isolate (WPI) systems were studied using dynamic dewpoint isotherms (DDI) method and dielectric analysis (DEA), respectively. The fractional water sorption behavior of lactose/WPI mixtures shown at aw ≤ 0.44 and the critical aw for water sorption-related crystallization (aw(cr)) of lactose were strongly affected by protein content based on DDI data. DEA results showed that the α-relaxation temperatures of amorphous lactose at various relaxation times were affected by the presence of water and WPI. The α-relaxation-derived strength parameter (S) of amorphous lactose decreased with aw up to 0.44 aw but the presence of WPI increased S. The linear relationship for aw(cr) and S for lactose/WPI mixtures was also established with R2 > 0.98. Therefore, DDI offers another structural investigation of water sorption-related crystallization as governed by aw(cr), and S may be used to describe real time effects of structural relaxations in noncrystalline multicomponent solids.
Resumo:
In farbstoffsensibilisierten Solarzellen (DSSC) spielen Chromophore, die als Lichtsammel- und Energie-/Elektronentransfersysteme fungieren, eine zentrale Rolle. Phthalocyanine mit ihren intensiven Absorptionsbanden um 400 nm und 700 nm besitzen großes Potential für die effektive Sensibilisierung von Solarzellen. Trotz ihrer vielversprechenden physikochemischen Eigenschaften und intensiver Bemühungen erreichen Phthalocyanin-sensibilisierte Solarzellen nicht die Effizienzen, die bisher mit anderen Chromophorklassen erzielt werden konnten. In der vorliegenden Dissertation wurde die Entwicklung effizienter Lichtsammelsysteme für DSSC auf der Basis von Aza-substituierten Phthalocyaninen, sogenannten Pyrazinoporphyrazinen, verfolgt. Ein besonderer Fokus lag dabei auf einer Verbesserung der Absorptionseigenschaften der Chromophore im Bereich ihrer intrinsischen Absorptionslücke zwischen den Maxima um 400 nm und 700 nm. Um diese optische Lücke zu schließen wurden komplementär absorbierende BODIPY-Farbstoffe kovalent an synthetisch maßgeschneiderte Porphyrazine gebunden. Insgesamt wurden sechs neue Porphyrazin-Sensibilisatoren synthetisiert und photophysikalisch sowie elektrochemisch charakterisiert. Alle in dieser Arbeit untersuchten Porphyrazine tragen sterisch anspruchsvolle Tri(p-tolyl)propinyl-Gruppen um Agglomerationen zu vermeiden. Darüber hinaus wurden die Porphyrazine peripher entweder mit Hydroxy- oder Carboxygruppen als Bindungsstellen für oxidische Materialien ausgestattet sowie mit sechs BODIPY-Auxiliarfarbstoffen funktionalisiert, deren Substitutionsmuster variiert wurden. Zur Darstellung der komplexen Porphyrazine wurde eine Syntheseroute erarbeitet, die statistische Cyclisierungen unterschiedlicher Dinitril-Vorstufen beinhaltete und es ermöglichte, funktionelle Gruppen erst am vorgeformten Makrocyclus einzuführen. Die photophysikalische Untersuchung der hochfunktionalisierten Farbstoffe erfolgte über UV/Vis- und Fluoreszenzspektroskopie. Im Fall der BODIPY-Porphyrazin-Hybride schließt die zusätzliche Absorptionsbande der peripheren BODIPY-Einheiten die intrinsische Absorptionslücke der Porphyrazine. Die Hybride zeigen somit eine breite Absorption über den gesamten sichtbaren Spektralbereich mit hohen Extinktionskoeffizienten von ca. 4·10^5 M^−1cm^−1. Mittels Fluoreszenz- und Anregungsspektren wurde ein photoinduzierter Energie-transfer von den BODIPY-Einheiten auf den Porphyrazinkern nachgewiesen. Das elektrochemische Verhalten der BODIPY- und Porphyrazin-Verbindungen wurde mittels Cyclo- und Square-Wave-Voltammetrie untersucht. Die Effizienzen der Lichtenergieumwandlung wurden mit Hilfe von selbst-hergestellten und standardisierten farbstoffsensibilisierten Solarzellen bewertet. Alle Solarzellen zeigten eine messbare Photoaktivität unter Bestrahlung. Die Wirkungsgrade der Zellen lagen jedoch alle unter 1 %. Generell führten die Carboxyl-funktionalisierten Porphyrazine zu besseren Wirkungsgraden als die analogen, mit der tripodalen Ankergruppe ausgestatteten Derivate. Die mit Hilfe von Adsorptionsisothermen ermittelten Bindungskonstanten der Adsorption der Farbstoffe auf der TiO2-Oberfläche zeigten, dass beide Hafteinheiten eine feste Verankerung der Chromophore auf den TiO2-Elektroden ermöglichten. Insgesamt wirkte sich die Präsenz der peripheren BODIPY-Farbstoffe positiv auf die Wirkungsgrade der Solarzellen aus, jedoch nur in geringem Maß. Dieses Ergebnis wurde hauptsächlich auf die geringe Energiedifferenz zwischen der Leitungsbandkante des TiO2 und den LUMO-Energieniveaus der Chromophore zurückgeführt. Zusätzlich scheinen konkurrierende Prozesse wie die direkte Photoelektroneninjektion von den BODIPY-Einheiten in das TiO2 eine wichtige Rolle zu spielen. Neben der Anwendung in DSSC wurde die Wechselwirkung der Porphyrazine mit Graphen untersucht. Hierzu wurden A3B-Porphyrazine mit Pyrenyl-Seitenketten ausgestattet, die eine nicht-kovalente Verankerung des Chromophors auf Graphen ermöglichen. UV/Vis- und Fluoreszenzmessungen gaben u.a. erste Hinweise auf eine elektronische Kommunikation zwischen den beiden Hybridpartnern.
Resumo:
The search for cleaner processes is one of the major challenges in modern chemical industries. In this context clay derived materials are environmentally friendly catalysts that can be easily tailored to optimize their catalytic activity for a precise reaction of interest. Furthermore, clay-based catalysts can be easily separated, recovered and reused and their versatility, low cost, high catalytic activity and/or selectivity render them very attractive materials. Considering that the stability towards water vapour is a crucial aspect for catalytic performance and reuse of the catalysts, we present a study of the pore structure stability, in the presence of water vapour, of clay catalysts prepared by acid activation with HCl solutions and ion-exchange with sodium, aluminium and iron, from a natural clay collected at Serra de Dentro (Porto Santo Island, Portugal) [1]. For elucidating the influence of water vapour on the pore structure stability, water vapour adsorption- -desorption isotherm, at 298 K, was determined on each sample by gravimetric method as well as n-pentane adsorption−desorption isotherms, at 298 K, which were determined before and after the corresponding water adsorption-desorption isotherms. Prior to the measurements, the samples were outgassed during 5 h at 473 K and the adsorptives were outgassed by repeated freeze–thaw cycles. The results to be reported in the communication allow us to state that, upon contact with water vapour, the less acid activated catalysts suffered some reduction in pore volume reflecting changes in the pore structure, while the more acid activated catalysts and those prepared by ion-exchange presented excellent stability upon one cycle of water vapour adsorption-desorption. The results are corroborated by nitrogen adsorption-desorption isotherms determined, at 77 K, before and after the water and n-pentane adsorption-desorption measurements.
Resumo:
For the activated carbon (AC) production, we used the most common industrial and consumer solid waste, namely polyethyleneterephthalate (PET), alone or blended with other synthetic polymer such polyacrylonitrile (PAN). By mixing PET, with PAN, an improvement in the yield of the AC production was found and the basic character and some textural and chemical properties were enhanced. The PET–PAN mixture was subjected to carbonisation, with a pyrolysis yield of 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. The AC revealed a high surface area (1400, 1230 and 1117 m2 g−1) and pore volume (0.46, 0.56 and 0.50 cm3 g−1), respectively, for PET, PAN and PET–PAN precursors. Selected ACs were successfully tested for 4- chloro-2-methylphenoxyacetic acid (MCPA) and diuron removal from the liquid phase, showing a higher adsorption capacity (1.7 and 1.2 mmol g−1, respectively, for MCPA and diuron) and good fits with the Langmuir (PET) and Freundlich equation (PAN and PET–PAN blend). With MCPA, the controlling factor to the adsorption capacity was the porous volume and the average pore size. Concerning diuron, the adsorption was controlled essentially by the external diffusion. A remarkable result is the use of different synthetic polymers wastes, as precursors for the production of carbon materials, with high potential application on the pesticides removals from the liquid phase.
Resumo:
Com os objetivos de avaliar a distribuição, persistência e degradação dos herbicidas no solo, na água e seu escape para outros corpos de água e avaliar os mecanismos de absorção/dessorção no solo, foi instalado um experimento de campo no Município de Pelotas no Rio Grande do Sul, utilizando-se os herbicidas propanil e clomazone na cultura de arroz alagado. O processo adotado para amostrar os produtos no solo foi aperfeiçoado, com a introdução de tubos de PVC perfurados que permitiam a ocorrência dos processos de troca no solo. Foram feitas as isotermas de adsorção para o propanil e clomazone, ajustadas por quatro modelos distintos. Fez-se também analise química dos grãos para os elementos N, P, K, Ca, Mg, S, Cu, Mn, Zn, determinando-se o teor de proteína bruta.Os resultados obtidos para o clomazone mostram que não houve contaminação ambiental pelo produto uma vez que nao foi detectada sua presença nas amostras de solo e agua do experimento. A ocorrência do propanil somente foi detectada nas amostras de solo coletadas com os tubos perfurados aos 30 e 120 dias após a emergência das plantas. Dos modelos de curvas de adsorção testados e comparados pelo método dos resíduos padronizados, o modelo de Freundlich foi o que melhor descreveu o comportamento dos dois produtos.
Resumo:
Biochar has been used worldwide as soil amendment. Due to the high sorption capacity of organic compounds by charcoal in general, the use of biochar can change the soil sorptive properties, that could result in a environmental protective strategy in one hand and/or in need of higher pesticides doses in another hand. However no data in the literature is available about the long term effect of biochar application in the sorptive properties of the soil, even studies about the sorptive properties of soil treated with biochar are scarce, the few available papers are with pure biochar. This unprecedented work, evaluating the sorption of atrazine in a clayed soil treated with biochar, under experimental field conditions, evaluated the sorption isotherms one and three years after the single biochar application (16 Mg ha-1 of biochar). One year after the biochar application the Kf was two times higher for the biochar amended soil than for the control one (without biochar). This effect decreases after three years from the application, but it is even significantly higher (50% higher) than the control treatment.