993 resultados para Formation proposal
Resumo:
Oligonucleotide-directed triple helix formation is one of the most versatile methods for the sequence specific recognition of double helical DNA. Chapter 2 describes affinity cleaving experiments carried out to assess the recognition potential for purine-rich oligonucleotides via the formation of triple helices. Purine-rich oligodeoxyribonucleotides were shown to bind specifically to purine tracts of double helical DNA in the major groove antiparallel to the purine strand of the duplex. Specificity was derived from the formation of reverse Hoogsteen G•GC, A•AT and T•AT triplets and binding was limited to mostly purine tracts. This triple helical structure was stabilized by multivalent cations, destabilized by high concentrations of monovalent cations and was insensitive to pH. A single mismatched base triplet was shown to destabilize a 15 mer triple helix by 1.0 kcal/mole at 25°C. In addition, stability appeared to be correlated to the number of G•GC triplets formed in the triple helix. This structure provides an additional framework as a basis for the design of new sequence specific DNA binding molecules.
In work described in Chapter 3, the triplet specificities and required strand orientations of two classes of DNA triple helices were combined to target double helical sequences containing all four base pairs by alternate strand triple helix formation. This allowed for the use of oligonucleotides containing only natural 3'-5' phosphodiester linkages to simultaneously bind both strands of double helical DNA in the major groove. The stabilities and structures of these alternate strand triple helices depended on whether the binding site sequence was 5'-(purine)_m (pyrimidine)_n-3' or 5'- (pyrimidine)_m (purine)_n-3'.
In Chapter 4, the ability of oligonucleotide-cerium(III) chelates to direct the transesterfication of RNA was investigated. Procedures were developed for the modification of DNA and RNA oligonucleotides with a hexadentate Schiff-base macrocyclic cerium(III) complex. In addition, oligoribonucleotides modified by covalent attachment of the metal complex through two different linker structures were prepared. The ability of these structures to direct transesterification to specific RNA phosphodiesters was assessed by gel electrophoresis. No reproducible cleavage of the RNA strand consistent with transesterification could be detected in any of these experiments.
Resumo:
An alternative fast-ignition method is proposed involving the formation of a hot spot outside the precompressed fusion-fuel core by a series of shocks driven directly by the light pressure of laser pulses of increasing intensities. It is shown that a hot spot, which can be of different material from that of the fuel core, with temperature similar to 10 keV and density similar to 200 g/cm(2), can be formed. Being an electrically neutral plasma, the hot spot can easily be sent into the fuel core. (c) 2005 American Institute of Physics.
Resumo:
Nucleic acids are most commonly associated with the genetic code, transcription and gene expression. Recently, interest has grown in engineering nucleic acids for biological applications such as controlling or detecting gene expression. The natural presence and functionality of nucleic acids within living organisms coupled with their thermodynamic properties of base-pairing make them ideal for interfacing (and possibly altering) biological systems. We use engineered small conditional RNA or DNA (scRNA, scDNA, respectively) molecules to control and detect gene expression. Three novel systems are presented: two for conditional down-regulation of gene expression via RNA interference (RNAi) and a third system for simultaneous sensitive detection of multiple RNAs using labeled scRNAs.
RNAi is a powerful tool to study genetic circuits by knocking down a gene of interest. RNAi executes the logic: If gene Y is detected, silence gene Y. The fact that detection and silencing are restricted to the same gene means that RNAi is constitutively on. This poses a significant limitation when spatiotemporal control is needed. In this work, we engineered small nucleic acid molecules that execute the logic: If mRNA X is detected, form a Dicer substrate that targets independent mRNA Y for silencing. This is a step towards implementing the logic of conditional RNAi: If gene X is detected, silence gene Y. We use scRNAs and scDNAs to engineer signal transduction cascades that produce an RNAi effector molecule in response to hybridization to a nucleic acid target X. The first mechanism is solely based on hybridization cascades and uses scRNAs to produce a double-stranded RNA (dsRNA) Dicer substrate against target gene Y. The second mechanism is based on hybridization of scDNAs to detect a nucleic acid target and produce a template for transcription of a short hairpin RNA (shRNA) Dicer substrate against target gene Y. Test-tube studies for both mechanisms demonstrate that the output Dicer substrate is produced predominantly in the presence of a correct input target and is cleaved by Dicer to produce a small interfering RNA (siRNA). Both output products can lead to gene knockdown in tissue culture. To date, signal transduction is not observed in cells; possible reasons are explored.
Signal transduction cascades are composed of multiple scRNAs (or scDNAs). The need to study multiple molecules simultaneously has motivated the development of a highly sensitive method for multiplexed northern blots. The core technology of our system is the utilization of a hybridization chain reaction (HCR) of scRNAs as the detection signal for a northern blot. To achieve multiplexing (simultaneous detection of multiple genes), we use fluorescently tagged scRNAs. Moreover, by using radioactive labeling of scRNAs, the system exhibits a five-fold increase, compared to the literature, in detection sensitivity. Sensitive multiplexed northern blot detection provides an avenue for exploring the fate of scRNAs and scDNAs in tissue culture.
Resumo:
Secondary organic aerosol (SOA) is produced in the atmosphere by oxidation of volatile organic compounds. Laboratory chambers are used understand the formation mechanisms and evolution of SOA formed under controlled conditions. This thesis presents studies of SOA formed from anthropogenic and biogenic precursors and discusses the effects of chamber walls on suspended vapors and particles.
During a chamber experiment, suspended vapors and particles can interact with the chamber walls. Particle wall loss is relatively well-understood, but vapor wall losses have received little study. Vapor wall loss of 2,3-epoxy-1,4-butanediol (BEPOX) and glyoxal was identified, quantified, and found to depend on chamber age and relative humidity.
Particles reside in the atmosphere for a week or more and can evolve chemically during that time period, a process termed aging. Simulating aging in laboratory chambers has proven to be challenging. A protocol was developed to extend the duration of a chamber experiment to 36 h of oxidation and was used to evaluate aging of SOA produced from m-xylene. Total SOA mass concentration increased and then decreased with increasing photooxidation suggesting a transition from functionalization to fragmentation chemistry driven by photochemical processes. SOA oxidation, measured as the bulk particle elemental oxygen-to-carbon ratio and fraction of organic mass at m/z 44, increased continuously starting after 5 h of photooxidation.
The physical state and chemical composition of an organic aerosol affect the mixing of aerosol components and its interactions with condensing species. A laboratory chamber protocol was developed to evaluate the mixing of SOA produced sequentially from two different sources by heating the chamber to induce particle evaporation. Using this protocol, SOA produced from toluene was found to be less volatile than that produced from a-pinene. When the two types of SOA were formed sequentially, the evaporation behavior most closely represented that of SOA from the second parent hydrocarbon, suggesting that the structure of the mixed SOA particles resembles a core of SOA from the first precursor coated by a layer of SOA from the second precursor, indicative of limiting mixing.
Resumo:
In this paper, we briefly summarize two typical morphology characteristics of the self-organized void array induced in bulk of fused silica glass by a tightly focused femtosecond laser beam, such as the key role of high numerical aperture in the void array formation and the concentric-circle-like structure indicated by the top view of the void array. By adopting a physical model which combines the nonlinear propagation of femtosecond laser pulses with the spherical aberration effect (SA) at the interface of two mediums of different refractive indices, reasonable agreements between the simulation results and the experimental results are obtained. By comparing the fluence distributions of the case with both SA and nonlinear effects included and the case with only consideration of SA, we suggest that spherical aberration, which results from the refractive index mismatch between air and fused silica glass, is the main reason for the formation of the self-organized void array. (c) 2008 American Institute of Physics.
Resumo:
Documento de trabajo
Formation of X-waves at fundamental and harmonics by infrared femtosecond pulse filamentation in air
Resumo:
We experimentally observe the formation of X-waves at fundamental, third harmonic, and fifth harmonic wavelengths by infrared (central wavelength at similar to 1500 nm) femtosecond laser pulse filamentation in air. By fitting the angularly resolved spectra of the fundamental and harmonic waves using X-wave relations, we confirm that all the X-waves have nearly the same group velocity, indicating that they are locked in space and time during their propagation in filament.
Resumo:
Pattern formation during animal development involves at least three processes: establishment of the competence of precursor cells to respond to intercellular signals, formation of a pattern of different cell fates adopted by precursor cells, and execution of the cell fate by generating a pattern of distinct descendants from precursor cells. I have analyzed the fundamental mechanisms of pattern formation by studying the development of Caenorhabditis elegans vulva.
In C. elegans, six multipotential vulval precursor cells (VPCs) are competent to respond to an inductive signal LIN-3 (EGF) mediated by LET- 23 (RTK) and a lateral signal via LIN-12 (Notch) to form a fixed pattern of 3°-3°-2°-1°-2°-3°. Results from expressing LIN-3 as a function of time in animals lacking endogenous LIN-3 indicate that both VPCs and VPC daughters are competent to respond to LIN-3. Although the daughters of VPCs specified to be 2° or 3° can be redirected to adopt the 1°fate, the decision to adopt the 1° fate is irreversible. Coupling of VPC competence to cell cycle progression reveals that VPC competence may be periodic during each cell cycle and involve LIN-39 (HOM-C). These mechanisms are essential to ensure a bias towards the 1° fate, while preventing an excessive response.
After adopting the 1° fate, the VPC executes its fate by dividing three rounds to form a fixed pattern of four inner vulF and four outer vulE descendants. These two types of descendants can be distinguished by a molecular marker zmp-1::GFP. A short-range signal from the anchor cell (AC), along with signaling between the inner and outer 1° VPC descendants and intrinsic polarity of 1° VPC daughters, patterns the 1° lineage. The Ras and the Wnt signaling pathways may be involved in these mechanisms.
The temporal expression pattern of egl-17::GFP, another marker ofthe 1° fate, correlates with three different steps of 1° fate execution: the commitment to the 1° fate, as well as later steps before and after establishment of the uterine-vulval connection. Six transcription factors, including LIN-1(ETS), LIN-39 (HOM-C), LIN-11(LIM), LIN-29 (zinc finger), COG-1 (homeobox) and EGL-38 (PAX2/5/8), are involved in different steps during 1° fate execution.
Resumo:
Two collinear femtosecond laser pulses, one at wavelength of 800 nm and the other at 400 nm (double frequency), simultaneously irradiated the surface of ZnSe crystal, which resulted in regular nanograting with period of 180 nm on the whole ablation area. We attribute the formation of the nanograting to be due to the interference between the surface scattered wave of 800 nm lasers and the 400 nm light. The period of the nanograting Lambda is about lambda/2n, where n is refractive index of the sample, and lambda, the laser wavelength. This mechanism is supported by observation of rotation of the nanograting with the polarization of 400 nm light, and by the dependence of Lambda similar to lambda of the nanoripples on the surface of semiconductors and dielectrics.
Resumo:
Papaseit et al. (Proc. Nati. Acad. Sci. U.S.A. 97, 8364, 2000) showed the decisive role of gravity in the formation of patterns by assemblies of microtubules in vitro. By virtue of a functional scaling, the free energy for MT systems in a gravitational field was constructed. The influence of the gravitational field on MT's self-organization process, that can lead to the isotropic to nematic phase transition, is the focus of this paper. A coupling of a concentration gradient with orientational order characteristic of nernatic ordering pattern formation is the new feature emerging in the presence of gravity. The concentration range corresponding to a phase coexistence region increases with increasing g or NIT concentration. Gravity facilitates the isotropic to nernatic phase transition leading to a significantly broader transition region. The phase transition represents the interplay between the growth in the isotropic phase and the precipitation into the nematic phase. We also present and discuss the numerical results obtained for local NIT concentration change with the height of the vessel, order parameter and phase transition properties.
Resumo:
Uniform arrays of periodic nanoparticles with 80-nm period are formed on 6H-SiC crystal irradiated by circularly polarized 400-nm femtosecond laser pulses. In order to understand the formation mechanism, the morphology evolvement as a function of laser pulse energy and number is studied. Periodic nanoripples are also formed on the sample surface irradiated by linearly polarized 400-, 510- and 800-nm femtosecond laser pulses. All these results support well the mechanism that second-harmonic generation plays an important role in the formation of periodic nanostructures.
Resumo:
Evidence for the stereochemical isomerization of a variety of ansa metallocene compounds is presented. For the scandocene allyl derivatives described here, we have established that the process is promoted by a variety of salts in both ether and hydrocarbon solvents and is not accelerated by light. A plausible mechanism based on an earlier proposal by Marks, et al., is offered as an explanation of this process. It involves coordination of anions and/or donor solvents to the metal center with cation assistance to encourage metalcyclopentadienyl bond heterolysis, rotation about the Si-Cp bond of the detached cyclopentadienide and recoordination of the opposite face. Our observations in some cases of thermodynamic racemic:meso ratios under the reaction conditions commonly used for the synthesis of the metallocene chlorides suggests that the interchange is faster than metallation, such that the composition of the reaction mixture is determined by thermodynamic, not kinetic, control in these cases.
Two new ansa-scandocene alkenyl compounds react with olefins resulting in the formation of η3-allyl complexes. Kinetics and labeling experiments indicate a tuck-in intermediate on the reaction pathway; in this intermediate the metal is bound to the carbon adjacent to the silyllinker in the rear of the metallocene wedge. In contrast, reaction of permethylscandocene alkenyl compounds with olefins results, almost exclusively, in vinylic C-H bond activation. It is proposed that relieving transition state steric interactions between the cyclopentadienyl rings and the olefin by either linking the rings together or using a larger lanthanide metal may allow for olefin coordination, stabilizing the transition state for allylic σ-bond metathesis.
A selectively isotopically labeled propylene, CH2CD(13CH3), was synthesized and its polymerization was carried out at low concentration in toluene solution using isospecific metallocene catalysts. Analysis of the NMR spectra (13C, 1H, and 2H) of the resultant polymers revealed that the production of stereoerrors through chain epimerization proceeds exclusively by the tertiaryalkyl mechanism. Additionally, enantiofacial inversion of the terminally unsaturated polymer chain occurs by a non-dissociative process. The implications of these results on the mechanism of olefin polymerization with these catalysts is discussed.
Resumo:
We investigate the mechanism of formation of periodic void arrays inside fused silica and BK7 glass irradiated by a tightly focused femtosecond (fs) laser beam. Our results show that the period of each void array is not uniform along the laser propagation direction, and the average period of the void array decreases with increasing pulse number and pulse energy. We propose a mechanism in which a standing electron plasma wave created by the interference of a fs-laser-driven electron wave and its reflected wave is responsible for the formation of the periodic void arrays.