940 resultados para Forensic human identification
Resumo:
Naturally occurring genetic variants confer susceptibility to disease in the human population, including in testicular germ cell tumor development. Disease susceptibility loci for testicular germ cell tumors have been identified by genetic mapping in humans and mice. However, the identity of many of the susceptibility genes remains unclear. My study utilized a chromosome substitution strain, the 129.MOLF-Chr 19 (or M19 strain), to identify candidate testicular germ cell tumor susceptibility genes. Males of this strain have a high incidence of germ cell tumors in the testes. By forward genetic approaches, five susceptibility loci were fine-mapped and the genetic interactions were dissected. In addition, I identified three protein-coding genes and one micro-RNA as testicular tumor susceptibility genes by genomic screening. Using reverse genetic approaches, I verified one of the candidates, Splicing factor 1, as a modifier of testicular tumor. Deficiency of SF1 significantly reduces the incidence of testicular tumors in mice. This study highlights the advantage of the 129.MOLF-Chr 19 consomic strain in disease gene identification and validation. It also sets the stage to elucidate the molecular mechanisms of tumorigenesis in the testis. ^
Resumo:
To identify genetic susceptibility loci for severe diabetic retinopathy, 286 Mexican-Americans with type 2 diabetes from Starr County, Texas completed detailed physical and ophthalmologic examinations including fundus photography for diabetic retinopathy grading. 103 individuals with moderate-to-severe non-proliferative diabetic retinopathy or proliferative diabetic retinopathy were defined as cases for this study. DNA samples extracted from study subjects were genotyped using the Affymetrix GeneChip® Human Mapping 100K Set, which includes 116,204 single nucleotide polymorphisms (SNPs) across the whole genome. Single-marker allelic tests and 2- to 8-SNP sliding-window Haplotype Trend Regression implemented in HelixTreeTM were first performed with these direct genotypes to identify genes/regions contributing to the risk of severe diabetic retinopathy. An additional 1,885,781 HapMap Phase II SNPs were imputed from the direct genotypes to expand the genomic coverage for a more detailed exploration of genetic susceptibility to diabetic retinopathy. The average estimated allelic dosage and imputed genotypes with the highest posterior probabilities were subsequently analyzed for associations using logistic regression and Fisher's Exact allelic tests, respectively. To move beyond these SNP-based approaches, 104,572 directly genotyped and 333,375 well-imputed SNPs were used to construct genetic distance matrices based on 262 retinopathy candidate genes and their 112 related biological pathways. Multivariate distance matrix regression was then used to test hypotheses with genes and pathways as the units of inference in the context of susceptibility to diabetic retinopathy. This study provides a framework for genome-wide association analyses, and implicated several genes involved in the regulation of oxidative stress, inflammatory processes, histidine metabolism, and pancreatic cancer pathways associated with severe diabetic retinopathy. Many of these loci have not previously been implicated in either diabetic retinopathy or diabetes. In summary, CDC73, IL12RB2, and SULF1 had the best evidence as candidates to influence diabetic retinopathy, possibly through novel biological mechanisms related to VEGF-mediated signaling pathway or inflammatory processes. While this study uncovered some genes for diabetic retinopathy, a comprehensive picture of the genetic architecture of diabetic retinopathy has not yet been achieved. Once fully understood, the genetics and biology of diabetic retinopathy will contribute to better strategies for diagnosis, treatment and prevention of this disease.^
Resumo:
Apoptosis is a normal physiological cell suicide process which is essential for tissue homeostasis and normal development of metazoans. Misregulation of apoptosis is associated with many developmental defects and human diseases. The genes involved in the regulation and execution of apoptosis are highly conserved in humans and flies. Caspases are the executioners of cell suicide. Because of the unavailability of specific fly mutants, the developmental function of many caspase genes and genetic relationship between caspases and apoptotic components were undefined in Drosophila. We isolated several mutant alleles of the initiator caspase gene dronc, the effector casase drICE, and the Mediator component Cyclin C from the GMR-hid eyFLP/FRT screens which is designed to isolate mutants of recessive cell death genes in Drosophila melanogaster. Characterization of these mutants defined that they are essential for developmental cell death in Drosophila. dronc is required for most, but not all, cell death in Drosophila. drICE is required for apoptosis in many cells and it shares redundancy with another effector caspase gene, dcp-1, in a subset of cells in Drosophila. The genetic relationship between caspases and other apoptotic components was established through mutant analysis. We found that the pro-apoptotic protein Hid induces transcription of the initiator caspase gene dronc and the GMR-induced dronc transcripts are dependent on activated effector casapses, revealing a novel regulatory mechanism to promote caspase activity in Drosophila. Cyclin C and its kinase partner Cdk8 are required for prompt transcriptional induction of dronc in cell killing contexts. In short, we define the essential pro-apoptoic function of dronc, drICE, and Cyclin C in Drosophila and reveal a novel mechanism for regulation of dronc transcription. In the long run, these studies will help us decipher the complicated regulatory mechanism of cell death in humans. ^
Resumo:
Streptococcus mutans has been identified as the primary etiological agent of human dental caries. Since its identification, there has been research focused on the development of a vaccine to prevent this disease. Preliminary research has been conducted to test both active and passive vaccines for Streptococcus mutans in animals and humans. Although a vaccine for dental caries caused by Streptococcus mutans would most likely be administered to children, no testing of any type of dental caries vaccines has been conducted on children as of yet. The public health imperative for the development of a vaccine is great. Not only will a vaccine reduce the various consequences, but it would also improve quality of life for many individuals. Among the many possible vaccine antigen candidates, researchers have also been focusing on protein antigens, GTFs, and Gbps as possible candidates for a vaccine. There are also many routes of administration under research, with topical, oral, and intranasal showing a lot of promise. This review will provide an overview on the current state of research, present key factors influencing prevalence of caries, and summarize and discuss the results of animal and human studies on caries vaccines against Streptococcus mutans. The progress and obstacles facing the development of a vaccine to fight dental caries will also be discussed. ^
Resumo:
Following posterior fossa surgery for resection of childhood medulloblastoma and primitive neuroectodermal tumor (M/PNET), cerebellar mutism (CM) may develop. This is a condition of absent or diminished speech in a conscious patient with no evidence of oral apraxia, which can be accompanied by other symptoms of the posterior fossa syndrome complex, which includes ataxia and hypotonia. Little is known about the etiology. Therefore, we conducted a SNP, gene, and pathway-level analysis to assess the role of host genetic variation on the risk of CM in M/PNET subjects following treatment. Cases (n= 20) and controls (n= 53) were recruited from the Childhood Cancer Epidemiology and Prevention Center, in Houston, TX. DNA samples were genotyped using the Illumina Human 1M Quad SNP chip. Ten pathways were identified from logistic regression used to identify the marginal effect of each SNP on CM risk. The minP test was conducted to identify associations between SNPs categorized to genes and CM risk. Pathways were assessed to determine if there was a significant enrichment of genes in the pathway compared to all other pathways. There were 78 genes that reached the threshold of min P ≤0.05 in 948 genes. The Neurotoxicity pathway was the most significant pathway after adjusting for multiple comparisons (q=0.040 and q=0.005, using Fisher's exact test and a test of proportions, respectively). Most genes within the Neurotoxicity pathway that reached a threshold of minP ≤0.05 were known to have an apoptosis function, possibly inducing neuronal apoptosis in the dentatothalamocortical pathway, and may be important in CM etiology in this population. This is the first study to assess the potential role of genetic risk factors on CM. As an exploratory study, these results should be replicated in a larger sample. ^
Resumo:
Structure-function analysis of human Integrator subunit 4 Anupama Sataluri Advisor: Eric. J. Wagner, Ph.D. Uridine-rich small nuclear RNAs (U snRNA) are RNA Polymerase-II (RNAPII) transcripts that are ubiquitously expressed and are known to be essential for gene expression. snRNAs play a key role in mRNA splicing and in histone mRNA expression. Inaccurate snRNA biosynthesis can lead to diseases related to defective splicing and histone mRNA expression. Although the 3′ end formation mechanism and processing machinery of other RNAPII transcripts such as mRNA has been well studied, the mechanism of snRNA 3′ end processing has remained a mystery until the recent discovery of the machinery that mediates this process. In 2005, a complex of 14 subunits (the Integrator complex) associated with RNA Polymerase-II was discovered. The 14subunits were annotated Integrator 1-14 based on their size. The subunits of this complex together were found to facilitate 3′ end processing of snRNA. Identification of the Integrator complex propelled research in the direction of understanding the events of snRNA 3’end processing. Recent studies from our lab confirmed that Integrator subunit (IntS) 9 and 11 together perform the endonucleolytic cleavage of the nascent snRNA 3′ end to generate mature snRNA. However, the role of other members of the Integrator complex remains elusive. Current research in our lab is focused on deciphering the role of each subunit within the Integrator complex This work specifically focuses on elucidating the role of human Integrator subunit 4 (IntS4) and understanding how it facilitates the overall function of the complex. IntS4 has structural similarity with a protein called “Symplekin”, which is part of the mRNA 3’end processing machinery. Symplekin has been thoroughly researched in recent years and structure-function correlation studies in the context of mRNA 3’end processing have reported a scaffold function for Symplekin due to the presence of HEAT repeat motifs in its N-terminus. Based upon the structural similarity between IntS4 and Symplekin, we hypothesized that Integrator subunit 4 may be behaving as a Symplekin-like scaffold molecule that facilitates the interaction between other members of the Integrator Complex. To answer this question, the two important goals of this study were to: 1) identify the region of IntS4, which is important for snRNA 3′ end processing and 2) determine binding partners of IntS4 which promote its function as a scaffold. IntS4 structurally consists of a highly conserved N-terminus with 8 HEAT repeats, followed by a nonconserved C- terminus. A series of siRNA resistant N and C-terminus deletion constructs as well as specific point mutants within its N-terminal HEAT repeats were generated for human IntS4 and, utilizing a snRNA transcriptional readthrough GFP-reporter assay, we tested their ability to rescue misprocessing. This assay revealed a possible scaffold like property of IntS4. To probe IntS4 for interaction partners, we performed co-immunoprecipitation on nuclear extracts of IntS4 expressing stable cell lines and identified IntS3 and IntS5 among other Integrator subunits to be binding partners which facilitate the scaffold like function of hIntS4. These findings have established a critical role for IntS4 in snRNA 3′ end processing, identified that both its N and C termini are essential for its function, and mapped putative interaction domains with other Integrator subunits.
Resumo:
Wilms tumor is a childhood tumor of the kidney arising from the undifferentiated metanephric mesenchyme. Tumorigenesis is attributed to a number of genetic and epigenetic alterations. In 20% of Wilms tumors, Wilms tumor gene 1 (WT1) undergoes inactivating homozygous mutations causing loss of function of the zinc finger transcription factor it encodes. It is hypothesized that mutations in WT1 result in dysregulation of downstream target genes, leading to aberrant kidney development and/or Wilms tumor. These downstream target genes are largely unknown, and identification is important for further understanding Wilms tumor development. Heatmap data of human Wilms tumor protein expression, generated by reverse phase protein assay analysis (RPPA), show significant correlation between WT1 mutation status and low PRKCα expression (p= 0.00013); additionally, p-PRKCα (S657) also shows decreased expression in these samples (p= 0.00373). These data suggest that the WT1 transcription factor regulates PRKCα expression, and that PRKCα plays a potential role in Wilms tumor tumorigenesis. We hypothesize that the WT1 transcription factor directly/indirectly regulates PRKCα and mutations occurring in WT1 lead to decreased expression of PRKCα. Prkcα and Wt1 have been shown to co-localize in E14.5 mesenchymal cells of the developing kidney. siRNA knockdown, in-vivo ablation, and tet-inducible expression of Wt1 each independently confirm regulation of Prkcα expression by Wt1 at both RNA and protein levels, and investigation into possible WT1 binding sites in PRKCα regulatory regions has identified multiple sites to be confirmed by luciferase reporter constructs. With the goal of identifying WT1 and PRKCα downstream targets, RPPA analysis of protein expression in mesenchymal cell culture, following lentiviral delivered shRNA knockdown of Wt1 and shRNA knockdown of Prkcα, will be carried out. Apart from Wilms tumor, WT1 also plays an important role in Acute Myeloid Leukemia (AML). WT1 mutation status has been implicated, controversially, as an independent poor-prognosis factor in leukemia, leading to decreased probability of overall survival, complete remission, and disease free survival. RPPA analysis of AML patient samples showed significant decreases in PRKCα/p-PRKCα protein expression in a subset of patients (Kornblau, personal communication); therefore, the possible role of WT1 and PRKCα in leukemia disease progression is an additional focus of this study. WT1 mutation analysis of diploid leukemia patient samples revealed two patients with mutations predicted to affect WT1 activity; of these two samples, only one corresponded to the low PRKCα expression cohort. Further characterization of the role of WT1 in AML, and further understanding of WT1 regulated PRKCα expression, will be gained following RPPA analysis of protein expression in HL60 leukemia cell lines with lentiviral delivered shRNA knockdown of WT1 and shRNA knockdown of PRKCα.
Resumo:
The purpose of this study was to investigate the role of the c-KIT receptor in the progression of human melanoma and the mechanism(s) for the regulation of c-KIT gene expression in human melanoma.^ The molecular changes associated with the transition of melanoma cells from radial growth phase (RGP) to vertical growth phase (VGP) (metastatic phenotype) are not well-defined. Expression of the tyrosine-kinase receptor c-KIT progressively decreases during local tumor growth and invasion of human melanomas. To provide direct evidence that the metastasis of human melanoma is associated with the loss of c-KIT expression, highly metastatic A375SM cells, which express very low or undetectable levels of c-KIT, were tranduced with the human c-KIT gene. We demonstrated that enforced c-KIT expression in highly metastatic human melanoma cells significantly suppressed their tumorigenicity and metastatic propensity in nude mice. In addition, we showed that the ligand for c-KIT, SCF, induces apoptosis in human melanoma cells expressing c-KIT under both in vitro and in vivo conditions. These results suggest that loss of c-KIT receptor may allow malignant melanoma cells to escape SCF/c-KIT-mediated apoptosis, thus contributing to tumor growth and eventually metastasis.^ Furthermore, we investigated the possible mechanism(s) for the down-regulation of c-KIT gene expression in malignant melanoma. Sequence analysis of the c-KIT promoter indicated that this promoter contains several consensus binding-site sequences including three putative AP2 and two Myb sites. Although Myb was shown to be associated with c-KIT expression in human hemotopoietic cells, we found no correlation between c-KIT expression and Myb expression in human melanoma cell lines. In contrast, we showed that c-KIT expression directly correlates with expression of AP2 in human melanoma cells. We found that highly metastatic cells do not express the transcription factor AP2. Expression of AP2 in A375SM cells (c-KIT-negative and AP2-negative) was enough to restore luciferase activity driven by the c-KIT promoter in a dose-dependent manner. On the other hand, co-expression of the dominant-negative form of AP2 (AP2B) in Mel-501 cells (c-KIT-positive and AP2-positive) resulted in two-fold reduction in luciferase activity. Electrophoretic mobility shift assays revealed that the c-KIT promoter contains functional AP2 binding sites which could associate with AP2 protein. Endogenous c-KIT gene expression levels were elevated in AP2 stably-transfected human melanoma A375SM cells. Expression of exogenous AP2 in A375SM cells inhibited their tumorigenicity and metastatic potential in nude mice. The c-KIT ligand, SCF, also induced apoptosis in the AP2 stably-transfected A375SM cells. The identification of AP2 as an important regulator for c-KIT expression suggests that AP2 may have tumor growth and metastasis inhibitory properties, possibly mediated through c-KIT/SCF effects on apoptosis of human melanoma cells. Since AP2 binding sites were found in the promoters of other genes involved in the progression of human melanoma, such as MMP2 (72 kDa collagenase), MCAM/MUC18 and P21/WAF-1, our findings suggest that loss of AP2 expression might be a crucial event in the development of malignant melanoma. ^
Resumo:
The human glutathione S-transferase P1 (GSTP1) protein is an endogenous inhibitor of c-jun N-terminal kinases (JNKs) and an important phase II detoxification enzyme. ^ Recent identification of a cAMP response element (CRE) in the 5 ′-region of the human GSTP1 gene and several putative phosphorylation sites for the Ser/Thr protein kinases, including, cAMP-dependent protein kinases (PKAs), protein kinases C (PKCs), and JNKs in the GSTP1 protein raised the possibility that signaling pathways may play an important role in the transcriptional and post-translational regulation of GSTP1 gene. This study examined (a) whether the signaling pathway mediated by CAMP, via the GSTP1 CRE, is involved in the transcriptional regulation of the GSTP1 gene, (b) whether signaling pathways mediated by the Ser/Thr protein kinases (PKAs, PKCs, and JNKs) induce post-translational modification, viz. phosphorylation of the GSTP1 protein, and (c) whether such phosphorylation of the GSTP1 protein alters its functions in metabolism and in JNK signaling. ^ The first major finding in this study is the establishment of the human GSTP1 gene as a novel CAMP responsive gene in which transcription is activated via an interaction between PKA activated CRE binding protein-1 (CREB-1) and the CRE in the 5′-regulatory region. ^ The second major finding in this study is the observation that the GSTP1 protein undergoes phosphorylation and functionally activated by second messenger-activated protein kinases, PKA and PKC, in tumor cells with activated signaling pathways. Following phosphorylation by PKA or PKC, the catalytic activity of the GSTP1 protein was significantly enhanced, as indicated by a decrease in its Km (2- to 3.6-fold) and an increase in Kcat/ Km (1.6- to 2.5-fold) for glutathione. Given the frequent over-expression of GSTP1 and the aberrant PKA/PKC signaling cascade observed in tumors, these findings suggest that phosphorylation of GSTP1 may contribute to the malignant progression and drug-resistant phenotype of these tumors. ^ The third major finding in this study is that the GSTP1 protein, an inhibitor of JNKs, undergoes significant phosphorylation in tumor cells with activated JNK signaling pathway and in those under oxidative stress. Following phosphorylation by JNK, the ability of GSTP1 to inhibit JNK downstream function, i.e. c-jun phosphorylation, was significantly enhanced, suggesting a feedback mechanism of regulation of JNK-mediated cellular signaling. (Abstract shortened by UMI.) ^
Resumo:
Identification and tracking of objects in specific environments such as harbors or security areas is a matter of great importance nowadays. With this purpose, numerous systems based on different technologies have been developed, resulting in a great amount of gathered data displayed through a variety of interfaces. Such amount of information has to be evaluated by human operators in order to take the correct decisions, sometimes under highly critical situations demanding both speed and accuracy. In order to face this problem we describe IDT-3D, a platform for identification and tracking of vessels in a harbour environment able to represent fused information in real time using a Virtual Reality application. The effectiveness of using IDT-3D as an integrated surveillance system is currently under evaluation. Preliminary results point to a significant decrease in the times of reaction and decision making of operators facing up a critical situation. Although the current application focus of IDT-3D is quite specific, the results of this research could be extended to the identification and tracking of targets in other controlled environments of interest as coastlines, borders or even urban areas.
Resumo:
This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staff
Resumo:
Background Malignancies arising in the large bowel cause the second largest number of deaths from cancer in the Western World. Despite progresses made during the last decades, colorectal cancer remains one of the most frequent and deadly neoplasias in the western countries. Methods A genomic study of human colorectal cancer has been carried out on a total of 31 tumoral samples, corresponding to different stages of the disease, and 33 non-tumoral samples. The study was carried out by hybridisation of the tumour samples against a reference pool of non-tumoral samples using Agilent Human 1A 60-mer oligo microarrays. The results obtained were validated by qRT-PCR. In the subsequent bioinformatics analysis, gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling were built. The consensus among all the induced models produced a hierarchy of dependences and, thus, of variables. Results After an exhaustive process of pre-processing to ensure data quality--lost values imputation, probes quality, data smoothing and intraclass variability filtering--the final dataset comprised a total of 8, 104 probes. Next, a supervised classification approach and data analysis was carried out to obtain the most relevant genes. Two of them are directly involved in cancer progression and in particular in colorectal cancer. Finally, a supervised classifier was induced to classify new unseen samples. Conclusions We have developed a tentative model for the diagnosis of colorectal cancer based on a biomarker panel. Our results indicate that the gene profile described herein can discriminate between non-cancerous and cancerous samples with 94.45% accuracy using different supervised classifiers (AUC values in the range of 0.997 and 0.955)
Resumo:
Background:Malignancies arising in the large bowel cause the second largest number of deaths from cancer in the Western World. Despite progresses made during the last decades, colorectal cancer remains one of the most frequent and deadly neoplasias in the western countries. Methods: A genomic study of human colorectal cancer has been carried out on a total of 31 tumoral samples, corresponding to different stages of the disease, and 33 non-tumoral samples. The study was carried out by hybridisation of the tumour samples against a reference pool of non-tumoral samples using Agilent Human 1A 60-mer oligo microarrays. The results obtained were validated by qRT-PCR. In the subsequent bioinformatics analysis, gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling were built. The consensus among all the induced models produced a hierarchy of dependences and, thus, of variables. Results: After an exhaustive process of pre-processing to ensure data quality--lost values imputation, probes quality, data smoothing and intraclass variability filtering--the final dataset comprised a total of 8, 104 probes. Next, a supervised classification approach and data analysis was carried out to obtain the most relevant genes. Two of them are directly involved in cancer progression and in particular in colorectal cancer. Finally, a supervised classifier was induced to classify new unseen samples. Conclusions: We have developed a tentative model for the diagnosis of colorectal cancer based on a biomarker panel. Our results indicate that the gene profile described herein can discriminate between non-cancerous and cancerous samples with 94.45% accuracy using different supervised classifiers (AUC values in the range of 0.997 and 0.955).
Resumo:
El siguiente Trabajo Fin de Master se divide en tres partes, siempre, alrededor de la identificación biométrica. Esta ciencia aprovecha que existen ciertas características biológicas o conductuales singulares e inalterables, por lo que pueden ser analizados y medidos para crear una huella biométrica. Estas características son difíciles de perder, transferir u olvidar y son perdurables en el tiempo. En la primera de las partes se ofrecerá una visión sobre la importancia histórica de esta ciencia, desde los primeros vestigios humanos, en la zona de Mesopotamia, pasando por los grandes innovadores y precursores de la identificación biométrica, como Bertillon, Galton, Vucetich, etc. auspiciados por una finalidad mayoritariamente criminalística o policiaca, hasta la gran revolución a finales del siglo pasado, en las que técnicas que parecían ciencia ficción se hicieron realidad. En el siguiente apartado se analizaran las 6 principales técnicas que se usan actualmente, realizando una mirada más profunda en los principios naturales, fisiológicos y físicos sobre los que se basan se expondrán las tendencias futuras sobre las que trabajara la industria para el desarrollo de técnicas más seguras, menos invasivas y más transparentes para los usuarios finales. Estas como ha pasado a lo largo de la historia sonaran increíbles, pero una vez más la raza humana conseguirá materializarlas e introducirlas en su día a día. Para finalizar y después de este estudio en detalle, se intentará realizar una comparación y análisis basados en las más importantes características para las técnicas biométricas, fiabilidad, facilidad, usurpación, aceptación y estabilidad, etc. ABSTRACT The following Master's Thesis is divided into three parts, always, about biometric identification. This science fail that certain biological or behavioural characteristics unique and unchangeable, so it can be analysed and measured to create a biometric fingerprint. These features are hard to miss, or forget to transfer and are enduring in time. In the first part a vision of the historical importance of this science are offered, from the earliest human remains in the area of Mesopotamia, to the great innovators and pioneers of biometric identification, such as Bertillon, Galton, Vucetich, etc. . sponsored a largely forensic or detective purpose, until the great revolution in the late nineteenth century, in which techniques that seemed science fiction became reality. The following section will analyse the 6 main techniques currently in use, making a deeper look at the natural, physiological and physical principles on which future trends are based on the industry to work for the development of techniques will be discussed more safer, less invasive and more transparent to end users. Such as has happened throughout history sounded amazing, but once again the human race get materialize and introduce them in their day to day. Finally and after the study in detail, and try to make a comparison based on the most important features for biometric technologies, reliability, ease, alienation, acceptance and stability analysis etc..
Resumo:
Degraded Land is an area that either by natural causes (fires, floods, storms or volcanic eruptions) or more by direct or indirect causes of human action, has been altered or modified from its natural state. Restoration is an activity that initiates or accelerates the recovery of an ecosystem. It can be defined as the set of actions taken in order to reverse or reduce the damage caused in the territory. In the case of the Canary Islands there is a high possibility for the territory to suffer processes that degrade the environment, given that the islands are very fragile ecosystems. Added to this they are territories isolated from the continent, which complicates the process of restoring them. In this paper, the different types of common degraded areas in the Canary Islands are identified, as well as the proposed solutions for remediation, such as afforestation of agricultural land or landfill closure and restoration.