891 resultados para Follicle-stimulating hormone
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This report summarizes three studies conducted with lactating dairy cows aiming to increase pregnancy rates to fixed time artificial insemination (TAI) protocols. Experiment 1 was designed to determine if changing the timing of PGF2 alpha treatment during an E2/P4-based program would affect fertility to TAI or fixed-time embryo transfer (TET). In experiment 2, pregnancy rates to AI were compared following synchronized ovulation using two protocols that have been developed to reduce the period between follicular wave emergence and TAI. The Ovsynch-type protocol utilizes GnRH to synchronize the follicular wave by inducing ovulation of a dominant follicle at the beginning of the protocol, and to synchronize ovulation at the end of the protocol allowing TAI. In contrast, E2/P4-based protocols utilize E2 products in the presence of P4 to induce atresia of antral follicles and synchronize emergence of a new follicular wave. At the end of E2/P4-based protocol another E2 treatment in the absence of P4 is used to induce LH release and synchronize ovulation and allow TAI. Experiment 3 was designed to determine whether increasing the length time interval with reduced circulating P4 (proestrus) would increase fertility in a TAI program that utilized E2 and P4 to synchronize ovulation of cycling, lactating dairy cows. The overall conclusions are that circulating concentrations of progesterone and estradiol prior to and circulating concentrations of progesterone following ovulation can affect fertility in cattle. In addition, small increases in P4 concentrations near the time of AI, due to lack of complete CL regression, result in reductions in fertility. Earlier treatment with PGF2 alpha should allow greater time for CL regression, an increase in estradiol and subsequent reductions in circulating P4 that could be critical for fertility. Optimization of follicle size in TAI programs is clearly an intricate balance between oocyte quality, adequate circulating E2 near AI, and adequate circulating P4 after AI.
Resumo:
The objective of this study was to determine the effect of age of the ovulatory follicle on fertility in beef heifers. Ovulation was synchronized with the 5 d CO-Synch + controlled intravaginal drug release (CIDR) program in heifers in Montana (MT; n = 162, Hereford and Angus Crossbred) and Ohio (OH; n = 170, Angus Crossbred). All heifers received estradiol benzoate (EB; 1 mg/500 kg BW, [i.m.]) 6 d after the final GnRH of the synchronization program to induce follicular atresia and emergence of a new follicular wave (NFW) followed by prostaglandin F2 alpha (PGF(2 alpha); 25 mg, i.m.) administration either 5 d (young follicle [YF]; n = 158) or 9 d (mature follicle [MF]; n = 174) after EB. Estrous detection was performed for 5 d after PGF(2 alpha) with AI approximately 12 h after onset of estrus. Ovarian ultrasonography (MT location only) was performed in YF and MF at EB, 5 d after EB, PGF(2 alpha), and AI. Heifers in MT (n = 20) and OH (n = 18) that were not presynchronized or did not initiate a NFW were excluded from further analyses, resulting in 142 and 152 heifers in MT and OH, respectively. Heifers from the MF treatment in MT that initiated a second NFW after EB but before PGF(2 alpha) (MF2; n = 14) were excluded from the primary analysis. In the secondary analysis, the MF2 group was compared to MF and YF treatments in MT. Estrous response was similar (90%; 252/280) between treatments and locations. Proestrus interval (from PGF(2 alpha) to estrus) and age of the ovulatory follicle at AI were similar for MF heifers between locations (54.6 +/- 1.7 h and 8.3 +/- 0.07 h) but were greater (P < 0.01) for YF heifers in OH (78.5 +/- 1.4 h and 5.3 +/- 0.06 h) than MT (67.4 +/- 1.6 h and 4.8 +/- 0.06 h; treatment x location, P < 0.01). However, conception rate did not differ for MF (63.8%; 74/116) and YF (67.0%; 91/136) treatments. In the MT heifers, follicle size and follicle age atAI in the YF treatment (10.4 +/- 0.15 mm and 4.8 +/- 0.06 d, respectively) was less (P < 0.01) than in the MF treatment (11.0 +/- 0.18 mm and 8.3 +/- 0.11 d, respectively), but conception rate to AI did not differ between treatments in MT. In the MF2 group proestrus interval was greater (P < 0.01); hence, diameter of the ovulatory follicle and age were similar to that for the YF treatment. Conception rate to AI did not differ between MF2, MF, and YF (61.5, 63.3, and 64.7%, respectively) in MT. In conclusion, manipulation of age of the nonpersistent ovulatory follicle at spontaneous ovulation did not influence conception rate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of the age of the ovulatory follicle on fertility in beef cows was investigated. Multiparous (n = 171) and primiparous (n = 129) postpartum beef cows in 2 groups (G1 and G2) received estradiol benzoate (EB; 1 mg/500 kg BW, intramuscular [i.m.]) 5.5 d (G1; n = 162) and 6.5 d (G2; n = 138) after the final GnRH of a synchronization program (5d CO-Synch + CIDR) to induce emergence of a new follicular wave (NFW), followed by prostaglandin F2 alpha (PGF2 alpha; 25 mg, i.m.) administration either 5.5 d (young follicle, YF; n = 155) or 9.5 d (mature follicle, MF; n = 145) after EB. Estrous detection coupled with AI 12 h later (estrus-AI) was performed for 60 h (MF) and 84 h (YF) after PGF(2 alpha); cows not detected in estrus within this period received timed AI (TAI) coupled with GnRH at 72 and 96 h, respectively. Within the first 72 h after PGF(2 alpha), more (P < 0.01) cows in the MF (76.3%) than YF treatment (47.7%) exhibited estrus, but through 96 h, the proportion detected in estrus (P < 0.05) and interval from PGF(2 alpha) to estrus (P < 0.01) were greater in the YF than MF treatment (88.6% vs. 76.3%, 78.9 +/- 0.8 vs. 57.5 +/- 1.6 h, respectively). Age of the ovulatory follicle at AI was greater (P < 0.01) in the MF (9.32 +/- 0.04 d) than YF (6.26 +/- 0.02 d) treatment, but follicle diameter at AI and pregnancy rates did not differ between MF (13.1 +/- 0.2 mm; 72.0%) and YF (12.9 +/- 0.1 mm; 67.1%) treatments. Regardless of treatment, the diameter of the ovulatory follicle at AI and pregnancy rate were greater (P < 0.01) with estrus-AI (13.1 +/- 0.1 mm; 75.0%) than TAI (12.6 +/- 0.2 mm; 55.4%). Cows in the MF treatment that initiated a second NFW after EB but before PGF(2 alpha) (MF2; n = 47) were induced to ovulate with GnRH and TAI at 72h, when ovulatory follicles were 4 d old and 10.2 +/- 0.2 mm in diameter. Pregnancy rate for TAI (51.1%) in MF2 did not differ from TAI pregnancy rate (55.4%) across the MF and YF treatments. In summary, the age of the ovulatory follicle affected interval to estrus and AI but did not influence pregnancy rate in suckled beef cows.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O presente trabalho envolveu três experimentos: Influência da imunização passiva contra estradiol (E2) e a aspiração do maior folículo (F1) no momento do desvio folicular esperado, sobre a ocorrência do desvio folicular observado. Também foi objetivo verificar o efeito desses tratamentos sobre o perfil de hormônio folículo estimulante (FSH), hormônio luteinizante (LH) e inibina total circulante. Para tanto, os animais foram imunizados com dose única de soro anti-E2 (G anti-E2) ou o F1 foi aspirado no momento do desvio esperado (GAF1). O plasma sangüíneo foi obtido no período pré e póstratamento. O intervalo entre o dia da aplicação do soro (desvio esperado) e o dia da detecção do desvio foi em média o mesmo para o G anti-E2 e controle. No GAF1, a eliminação do maior folículo provocou atraso no momento da detecção do desvio folicular entre o segundo (F2) e o terceiro (F3) maior folículo, comparado ao controle. Em ambos os tratamentos o perfil de FSH, LH e inibina total foi similar ao controle. O experimento 2 tratou de um projeto piloto visando dominar a técnica de colheita de fluido dos grandes folículos ovarianos por meio de punção com agulha fina e o efeito desse procedimento sobre o folículo e às concentrações hormonais. Foram utilizados dois grupos de animais, G1 o folículo foi mantido intacto (controle) e G2 foi utilizada uma punção folicular quando o maior folículo atingiu diâmetro ~35 mm. Ultrasonografia ovariana foi realizada desde o ínicio da detecção de um folículo ~25mm, seguindo até a detecção da ovulação. O terceiro experimento objetivou verificar a influência de gonadotrofina coriônica humana (hCG) em folículos de 30 ou 35mm sobre as concentrações de hormônios esteróides e fatores intrafoliculares. A colheita do fluido folicular foi realizada imediatamente antes e 30 horas após a aplicação... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Thyroid hormones (THs) have long been known to have regulatory roles in the differentiation and maturation of vertebrate embryos, beginning with the knowledge that hormones of maternal origin are essential for human fetal central nervous and respiratory system development. Precise measurements of circulating THs led to insights into their critically important actions throughout vertebrate growth and development, initially with amphibian metamorphosis and including embryogenesis in fishes. Thyroid cues for larval fish differentiation are enhanced by glucocorticoid hormones, which promote deiodinase activity and thereby increase the generation of triiodothyronine (T-3) from the less bioactive thyroxin (T-4). Glucocorticoids also induce the expression of thyroid hormone receptors in some vertebrates. Maternally derived thyroid hormones and cortisol are deposited in fish egg yolk and accelerate larval organ system differentiation until larvae become capable of endogenous endocrine function. Increases in the T-3/T-4 ratio during larval development may reflect the regulatory importance of maternal thyroid hormones. Experimental applications of individual hormones have produced mixed results, but treatments with combinations of thyroid and corticoid hormones consistently promote larval fish development and improve survival rates. The developmental and survival benefits of maternal endocrine provisioning are increased in viviparous fishes, in which maternal/larval chemical contact is prolonged. Treatments with exogenous thyroid and corticoid hormones consistently promote development and reduce mortality rates in larval fishes, with potential hatchery-scale applications in aquaculture.