984 resultados para Folk songs, Swiss.
Resumo:
The Hungarian way of decoration has certain characteristics which are rooted in the deep symbolism of ancient Hungarian mythical thinking. The ancient heritage of the Hungarians' former homeland somewhere in the Urals included eastern elements. During their migrations, the Hungarian tribes met other eastern peoples and their culture of decoration became mixed with elements drawn from these new contacts. These diverse influences mean that the Hungarian way of thinking, building and ornamentation show a certain dualism of Puritanism and rationalism in the creation of space and manufacturing, and rich fantasy in decoration and ornamentation. The Hungarians use coloured ornamentation to emphasise the symbolic importance of details. The colouring system of the built environment shows the same dualism: the main colour of the facades and inner walls is white, while the furniture, textiles, gates and windows, and sometimes the gable and fireplace are richly decorated. In Hungarian symbolism, the house and settlement are a model of the universe, so their different parts also have a transcendent meaning. The traditional meanings of the different colours reflect this transcendence. Each colour has ambivalent meanings: RED - the colour of blood - means violence and love. YELLOW - means sickness, death and ripeness (golden yellow). BLUE - means innocence, eternity (light blue) and old age, death (dark blue). BLACK - can be both ceremonial and mourning. WHILE - can have sacred meaning (bright white), while yellowish white fabric is the most common garb of both men and women in village society. GREEN - the only colour without a dual meaning, symbolises the beginning of life. Until the late 18th and early 19th centuries Hungarian folk art used one or two-coloured decoration (red, black, blue, red-blue or red-black), and from the early 19th century it moved to multi-coloured decoration. Colours are characteristically used in complementary contrast, with bright colours on a plain ground and an avoidance of subtle shadings.
Resumo:
Climate change is expected to profoundly influence the hydrosphere of mountain ecosystems. The focus of current process-based research is centered on the reaction of glaciers and runoff to climate change; spatially explicit impacts on soil moisture remain widely neglected. We spatio-temporally analyzed the impact of the climate on soil moisture in a mesoscale high mountain catchment to facilitate the development of mitigation and adaptation strategies at the level of vegetation patterns. Two regional climate models were downscaled using three different approaches (statistical downscaling, delta change, and direct use) to drive a hydrological model (WaSiM-ETH) for reference and scenario period (1960–1990 and 2070–2100), resulting in an ensemble forecast of six members. For all ensembles members we found large changes in temperature, resulting in decreasing snow and ice storage and earlier runoff, but only small changes in evapotranspiration. The occurrence of downscaled dry spells was found to fluctuate greatly, causing soil moisture depletion and drought stress potential to show high variability in both space and time. In general, the choice of the downscaling approach had a stronger influence on the results than the applied regional climate model. All of the results indicate that summer soil moisture decreases, which leads to more frequent declines below a critical soil moisture level and an advanced evapotranspiration deficit. Forests up to an elevation of 1800 m a.s.l. are likely to be threatened the most, while alpine areas and most pastures remain nearly unaffected. Nevertheless, the ensemble variability was found to be extremely high and should be interpreted as a bandwidth of possible future drought stress situations.
Resumo:
[1] Instrumental temperature series are often affected by artificial breaks (“break points”) due to (e.g.,) changes in station location, land-use, or instrumentation. The Swiss climate observation network offers a high number and density of stations, many long and relatively complete daily to sub-daily temperature series, and well-documented station histories (i.e., metadata). However, for many climate observation networks outside of Switzerland, detailed station histories are missing, incomplete, or inaccessible. To correct these records, the use of reliable statistical break detection methods is necessary. Here, we apply three statistical break detection methods to high-quality Swiss temperature series and use the available metadata to assess the methods. Due to the complex terrain in Switzerland, we are able to assess these methods under specific local conditions such as the Foehn or crest situations. We find that the temperature series of all stations are affected by artificial breaks (average = 1 break point / 48 years) with discrepancies in the abilities of the methods to detect breaks. However, by combining the three statistical methods, almost all of the detected break points are confirmed by metadata. In most cases, these break points are ascribed to a combination of factors in the station history.