890 resultados para Finite-Element Analysis
Resumo:
There is a tremendous amount of mystery that surrounds the instruments of Antonio Stradivari. There have been many studies done in the past, but no one completely understands exactly how he made his instruments, or why they are still considered the best in the world. This project is designed to develop an engineering model of one of Stradivari's violins that will accurately simulate the structural and acoustic behavior of the instrument. It also hopes to shine some light on what makes the instruments of Stradivari unique when compared to other violins. It will focus on geometry and material properties, utilizing several modern engineering tools, including CT scanning, experimental modal analysis, finite element analysis, correlation techniques, and acoustic synthesis.
Resumo:
A silicon-based microcell was fabricated with the potential for use in in-situ transmission electron microscopy (TEM) of materials under plasma processing. The microcell consisted of 50 nm-thick film of silicon nitride observation window with 60μm distance between two electrodes. E-beam scattering Mont Carlo simulation showed that the silicon nitride thin film would have very low scattering effect on TEM primary electron beam accelerated at 200 keV. Only 4.7% of primary electrons were scattered by silicon nitride thin film and the Ar gas (60 μm thick at 1 atm pressure) filling the space between silicon nitride films. Theoretical calculation also showed low absorption of high-energy e-beam electrons. Because the plasma cell needs to survive the high vacuum TEM chamber while holding 1 atm internal pressure, a finite element analysis was performed to find the maximum stress the low-stress silicon nitride thin film experienced under pressure. Considering the maximum burst stress of low-stress silicon nitride thin film, the simulation results showed that the 50 nm silicon nitride thin film can be used in TEM under 1 atm pressure as the observation window. Ex-situ plasma generation experiment demonstrated that air plasma can be ignited at DC voltage of 570. A Scanning electron microscopy (SEM) analysis showed that etching and deposition occurred during the plasma process and larger dendrites formed on the positive electrode.
Resumo:
Vertebral cement augmentation can restore the stiffness and strength of a fractured vertebra and relieve chronic pain. Previous finite element analysis, biomechanical tests and clinical studies have indirectly associated new adjacent vertebral fractures following augmentation to altered loading. The aim of this repeated measures in situ biomechanical study was to determine the changes in the adjacent and augmented endplate deformation following cement augmentation of human cadaveric functional spine units (FSU) using micro-computed tomography (micro-CT). The surrounding soft tissue and posterior elements of 22 cadaveric human FSU were removed. FSU were assigned to two groups, control (n = 8) (loaded on day 1 and day 2) and augmented (n = 14) (loaded on day 1, augmented 20% cement fill, and loaded on day 2). The augmented group was further subdivided into a prophylactic augmentation group (n = 9), and vertebrae which spontaneously fractured during loading on day 1 (n = 5). The FSU were axially loaded (200, 1,000, 1,500-2,000 N) within a custom made radiolucent, saline filled loading device. At each loading step, FSUs were scanned using the micro-CT. Endplate heights were determined using custom software. No significant increase in endplate deformation following cement augmentation was noted for the adjacent endplate (P > 0.05). The deformation of the augmented endplate was significantly reduced following cement augmentation for both the prophylactic and fracture group (P < 0.05, P < 0.01, respectively). Endplate deformation of the controls showed no statistically significant differences between loading on day 1 and day 2. A linear relationship was noted between the applied compressive load and endplate deflection (R (2) = 0.58). Evidence of significant endplate deformation differences between unaugmented and augmented FSU, while evident for the augmented endplate, was not present for the adjacent endplate. This non-invasive micro-CT method may also be useful to investigate endplate failure, and parameters that predict vertebral failure.
Resumo:
In this paper a superelement formulation for geometric nonlinear finite element analysis is proposed. The element formulation is based on matrices generated by the static condensation algorithm. After defining the element characteristics, a method for the calculation of the element forces in a large displacement and rotation analysis is developed. In order to use the element in the solution of stability problems, the formulation of the geometric stiffness matrix is derived. An example shows the benefits of the element for the calculation of lattice-boom cranes.
Resumo:
Summary Changes of the bone formation marker PINP correlated positively with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis (GIO) who received 18-month treatment with teriparatide, but not with risedronate. These results support the use of PINP as a surrogate marker of bone strength in GIO patients treated with teriparatide. Introduction To investigate the correlations between biochemical markers of bone turnover and vertebral strength estimated by finite element analysis (FEA) in men with GIO. Methods A total of 92 men with GIO were included in an 18-month, randomized, open-label trial of teriparatide (20 μg/day, n = 45) and risedronate (35 mg/week, n = 47). High-resolution quantitative computed tomography images of the 12th thoracic vertebra obtained at baseline, 6 and 18 months were converted into digital nonlinear FE models and subjected to anterior bending, axial compression and torsion. Stiffness and strength were computed for each model and loading mode. Serum biochemical markers of bone formation (amino-terminal-propeptide of type I collagen [PINP]) and bone resorption (type I collagen cross-linked C-telopeptide degradation fragments [CTx]) were measured at baseline, 3 months, 6 months and 18 months. A mixed-model of repeated measures analysed changes from baseline and between-group differences. Spearman correlations assessed the relationship between changes from baseline of bone markers with FEA variables. Results PINP and CTx levels increased in the teriparatide group and decreased in the risedronate group. FEA-derived parameters increased in both groups, but were significantly higher at 18 months in the teriparatide group. Significant positive correlations were found between changes from baseline of PINP at 3, 6 and 18 months with changes in FE strength in the teriparatide-treated group, but not in the risedronate group. Conclusions Positive correlations between changes in a biochemical marker of bone formation and improvement of biomechanical properties support the use of PINP as a surrogate marker of bone strength in teriparatide-treated GIO patients.
Resumo:
The finite element analysis is an accepted method to predict vertebral body compressive strength. This study compares measurements obtained from in vitro tests with the ones from two different simulation models: clinical quantitative computer tomography (QCT) based homogenized finite element (hFE) models and pre-clinical high-resolution peripheral QCT-based (HR-pQCT) hFE models. About 37 vertebral body sections were prepared by removing end-plates and posterior elements, scanned with QCT (390/450μm voxel size) as well as HR-pQCT (82μm voxel size), and tested in compression up to failure. Non-linear viscous damage hFE models were created from QCT/HT-pQCT images and compared to experimental results based on stiffness and ultimate load. As expected, the predictability of QCT/HR-pQCT-based hFE models for both apparent stiffness (r2=0.685/0.801r2=0.685/0.801) and strength (r2=0.774/0.924r2=0.774/0.924) increased if a better image resolution was used. An analysis of the damage distribution showed similar damage locations for all cases. In conclusion, HR-pQCT-based hFE models increased the predictability considerably and do not need any tuning of input parameters. In contrast, QCT-based hFE models usually need some tuning but are clinically the only possible choice at the moment.
Resumo:
The majority of people who sustain hip fractures after a fall to the side would not have been identified using current screening techniques such as areal bone mineral density. Identifying them, however, is essential so that appropriate pharmacological or lifestyle interventions can be implemented. A protocol, demonstrated on a single specimen, is introduced, comprising the following components; in vitro biofidelic drop tower testing of a proximal femur; high-speed image analysis through digital image correlation; detailed accounting of the energy present during the drop tower test; organ level finite element simulations of the drop tower test; micro level finite element simulations of critical volumes of interest in the trabecular bone. Fracture in the femoral specimen initiated in the superior part of the neck. Measured fracture load was 3760 N, compared to 4871 N predicted based on the finite element analysis. Digital image correlation showed compressive surface strains as high as 7.1% prior to fracture. Voxel level results were consistent with high-speed video data and helped identify hidden local structural weaknesses. We found using a drop tower test protocol that a femoral neck fracture can be created with a fall velocity and energy representative of a sideways fall from standing. Additionally, we found that the nested explicit finite element method used allowed us to identify local structural weaknesses associated with femur fracture initiation.
Resumo:
The International Society for Clinical Densitometry (ISCD) has developed new official positions for the clinical use of computed tomography (CT) scans acquired without a calibration phantom, for example, CT scans obtained for other diagnosis such as colonography. This also addresses techniques suggested for opportunistic screening of osteoporosis. The ISCD task force for quantitative CT reviewed the evidence for clinical applications of these new techniques and presented a report with recommendations at the 2015 ISCD Position Development Conference. Here we discuss the agreed upon ISCD official positions with supporting medical evidence, rationale, controversy, and suggestions for further study. Advanced techniques summarized as statistical parameter mapping methods were also reviewed. Their future use is promising but the clinical application is premature. The clinical use of QCT of the hip is addressed in part I and of finite element analysis of the hip and spine in part II.
Resumo:
The International Society for Clinical Densitometry (ISCD) has developed new official positions for the clinical use of quantitative computed tomography of the hip. The ISCD task force for quantitative computed tomography reviewed the evidence for clinical applications and presented a report with recommendations at the 2015 ISCD Position Development Conference. Here, we discuss the agreed on ISCD official positions with supporting medical evidence, rationale, controversy, and suggestions for further study. Parts II and III address the advanced techniques of finite element analysis applied to computed tomography scans and the clinical feasibility of existing techniques for opportunistic screening of osteoporosis using computed tomography scans obtained for other diagnosis such as colonography was addressed.
Resumo:
To study the fluid motion-vehicle dynamics interaction, a model of four, liquid filled two-axle container freight wagons was set up. The railway vehicle has been modelled as a multi-body system (MBS). To include fluid sloshing, an equivalent mechanical model has been developed and incorporated. The influence of several factors has been studied in computer simulations, such as track defects, curve negotiation, train velocity, wheel wear, liquid and solid wagonload, and container baffles. SIMPACK has been used for MBS analysis, and ANSYS for liquid sloshing modelling and equivalent mechanical systems validation. Acceleration and braking manoeuvres of the freight train set the liquid cargo into motion. This longitudinal sloshing motion of the fluid cargo inside the tanks initiated a swinging motion of some components of the coupling gear. The coupling gear consists of UIC standard traction hooks and coupling screws that are located between buffers. One of the coupling screws is placed in the traction hook of the opposite wagon thus joining the two wagons, whereas the unused coupling screw rests on a hanger. Simulation results showed that, for certain combinations of type of liquid, filling level and container dimensions, the liquid cargo could provoke an undesirable, although not hazardous, release of the unused coupling screw from its hanger. The coupling screw's release was especially obtained when a period of acceleration was followed by an abrupt braking manoeuvre at 1 m/s2. It was shown that a resonance effect between the liquid's oscillation and the coupling screw's rotary motion could be the reason for the coupling screw's undesired release. Possible solutions to avoid the phenomenon are given.Acceleration and braking manoeuvres of the freight train set the liquid cargo into motion. This longitudinal sloshing motion of the fluid cargo inside the tanks initiated a swinging motion of some components of the coupling gear. The coupling gear consists of UIC standard traction hooks and coupling screws that are located between buffers. One of the coupling screws is placed in the traction hook of the opposite wagon thus joining the two wagons, whereas the unused coupling screw rests on a hanger. This paper reports on a study of the fluid motion-train vehicle dynamics interaction. In the study, a model of four, liquid-filled two-axle container freight wagons was developed. The railway vehicle has been modeled as a multi-body system (MBS). To include fluid sloshing, an equivalent mechanical model has been developed and incorporated. The influence of several factors has been studied in computer simulations, such as track defects, curve negotiation, train velocity, wheel wear, liquid and solid wagonload, and container baffles. A simulation program was used for MBS analysis, and a finite element analysis program was used for liquid sloshing modeling and equivalent mechanical systems validation. Acceleration and braking maneuvers of the freight train set the liquid cargo into motion. This longitudinal sloshing motion of the fluid cargo inside the tanks initiated a swinging motion of some components of the coupling gear. Simulation results showed that, for certain combinations of type of liquid, filling level and container dimensions, the liquid cargo could provoke an undesirable, although not hazardous, release of an unused coupling screw from its hanger. It was shown that a resonance effect between the liquid's oscillation and the coupling screw's rotary motion could be the reason for the coupling screw's undesired release. Solutions are suggested to avoid the resonance problem, and directions for future research are given.
Resumo:
Semiconductor nanowires (NWs) are fundamental structures for nanoscale devices. The excitation of NWs with laser beams results in thermal effects that can substantially change the spectral shape of the spectroscopic data. In particular, the interpretation of the Raman spectrum is greatly influenced by excitation induced temperature. A study of the interaction of the NWs with the excitation laser beam is essential to interpret the spectra. We present herein a finite element analysis of the interaction between the laser beam and the NWs. The resultas are applied to the interpretation of the Raman spectrum of bundles of NWs
Resumo:
In this paper, switched reluctance motors (SRM) are proposed as an alternative for electric power assisted steering (EPAS) applications. A prototype machine has been developed as very attractive design for a steering electric motor, both from a cost and size perspective. A fourphase 8/6 SRM drive is designed for a rack type EPAS which should provide a maximum force of 10 kN. Two-dimension finite element analysis is used to validate the design.
Resumo:
A novel methodology based on instrumented indentation is developed to determine the mechanical properties of amorphous materials which present cohesive-frictional behaviour. The approach is based on the concept of a universal hardness equation, which results from the assumption of a characteristic indentation pressure proportional to the hardness. The actual universal hardness equation is obtained from a detailed finite element analysis of the process of sharp indentation for a very wide range of material properties, and the inverse problem (i.e. how to extract the elastic modulus, the compressive yield strength and the friction angle) from instrumented indentation is solved. The applicability and limitations of the novel approach are highlighted. Finally, the model is validated against experimental data in metallic and ceramic glasses as well as polymers, covering a wide range of amorphous materials in terms of elastic modulus, yield strength and friction angle.
Resumo:
Residual stresses developed during wire drawing influence the mechanical behavior and durability of steel wires used for prestressed concrete structures, particularly the shape of the stress–strain curve, stress relaxation losses, fatigue life, and environmental cracking susceptibility. The availability of general purpose finite element analysis tools and powerful diffraction techniques (X-rays and neutrons) has made it possible to predict and measure accurately residual stress fields in cold-drawn steel wires. Work carried out in this field in the past decade, shows the prospects and limitations of residual stress measurement, how the stress relaxation losses and environmentally-assisted cracking are correlated with the profile of residual stresses and how the performance of steel wires can be improved by modifying such a stress profile
Resumo:
This paper presents a time-domain stochastic system identification method based on maximum likelihood estimation (MLE) with the expectation maximization (EM) algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. The benchmark structure is a four-story, two-bay by two-bay steel-frame scale model structure built in the Earthquake Engineering Research Laboratory at the University of British Columbia, Canada. This paper focuses on Phase I of the analytical benchmark studies. A MATLAB-based finite element analysis code obtained from the IASC-ASCE SHM Task Group web site is used to calculate the dynamic response of the prototype structure. A number of 100 simulations have been made using this MATLAB-based finite element analysis code in order to evaluate the proposed identification method. There are several techniques to realize system identification. In this work, stochastic subspace identification (SSI)method has been used for comparison. SSI identification method is a well known method and computes accurate estimates of the modal parameters. The principles of the SSI identification method has been introduced in the paper and next the proposed MLE with EM algorithm has been explained in detail. The advantages of the proposed structural identification method can be summarized as follows: (i) the method is based on maximum likelihood, that implies minimum variance estimates; (ii) EM is a computational simpler estimation procedure than other optimization algorithms; (iii) estimate more parameters than SSI, and these estimates are accurate. On the contrary, the main disadvantages of the method are: (i) EM algorithm is an iterative procedure and it consumes time until convergence is reached; and (ii) this method needs starting values for the parameters. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using both the SSI method and the proposed MLE + EM method. The numerical results show that the proposed method identifies eigenfrequencies, damping ratios and mode shapes reasonably well even in the presence of 10% measurement noises. These modal parameters are more accurate than the SSI estimated modal parameters.