847 resultados para Fatty acids -- Metabolism.
Resumo:
One hypothesis for the increased incidence of atopic diseases has been that it is associated with changing dietary habits, especially the changed intake of essential fatty acids (EFAs). The metabolism of EFAs produces eiconasoids, prostaglandins and leukotrienes, which are essential to organs and play a major role in regulation of inflammation and immune response. In some studies persons with atopic dermatitis have been found to have reduced levels of EFAs. The first year of infancy as well as the foetal period are crucial for the development of atopic immune response. The composition of blackcurrant seed oil (BCSO) corresponds to the recommended ratio of EFAs n-3 and n-6 in the diet (1/3-1/4) and as a dietary supplement could, even in small doses, modify the unbalance of EFAs in an efficient way. The purpose of this study was to find out whether atopic allergies can be prevented by supplementing the diet of pregnant mothers with blackcurrant seed oil and whether it could affect the immunological balance of a child. We also sought to find out whether a blackcurrant seed oil supplementation can affect the composition of breast milk to suppress the T helper 2 lymphocyte (Th2) responses in infants. 313 pregnant mothers were randomly assigned to receive BCSO (n=151) or olive oil as placebo (n=162). Supplementation was started at the 8th to 16th weeks of pregnancy, 6 capsules per day (dose of 3 g), and continued until the cessation of breastfeeding. It was thereafter followed by direct supplementation to infants of 1 ml (1 g) of oil per day until the age of two years. Atopic dermatitis and its severity (SCORAD index) were evaluated, serum total IgE was measured and skin prick tests were performed at the age of 3, 12 and 24 months. Peripheral blood mononuclear cell (PBMC) samples were taken at the age of 3 and 12 months and breast milk samples were collected during the first 3 months of breastfeeding. Parental atopy was common (81.7%) in the studied infants, making them infants with increased atopy risk. There was a significantly lower prevalence of atopic dermatitis in the BCSO group (33%) than in the olive oil group (47%) at the age of 12 months. Also, SCORAD was lower in the BCSO group than in the olive oil group. Dietary intervention with BCSO had immunomodulatory effects on breast milk, inducing cytokine production from Th2 to Th1 immunodeviation. It decreased the level of IL-4 and elevated the level of IFN-γ. BCSO intervention did not affect cytokines in the children’s PBMC. However, children of smoking parents in the combined BCSO and olive oil group had significantly elevated levels of Th2 type cytokines IL-4, IL-5 and the proinflammator cytokine TNF. Dietary supplementation with BCSO is safe. It is well tolerated and transiently reduces the prevalence of atopic dermatitis at the age of 12 months. It can possibly become a potential tool in prevention of atopic symptoms when used at the early stages of life.
Resumo:
The seeds of 14 species from the caatinga, a dry forest ecosystem of the semiarid region of northeast Brazil, were analysed for total protein and total lipid contents, as well as fatty acid distribution. The seeds of Argemone mexicana L., an introduced and naturalized species in Brazil, commonly found in caatingas and other vegetation, were also analysed. The protein contents ranged from 123 g.kg-1 to 551 g.kg-1, higher contents being found in species of Leguminosae, but also in Jatropha mollissima (Pohl) Baill. (Euphorbiaceae, 409 g.kg-1). Oil contents ranged from 10 g.kg-1 to 400 g.kg-1. The contents of protein and oil were found to be inversely proportional in the seeds of most species, the figures for proteins being generally higher than those of oils. Most species presented either oleic or linoleic as predominant fatty acids. Cardiospermum cf. corindum L. presented eicosenoic acid as the predominant fatty acid.
Resumo:
The effect of free cholesterol on the fatty acid composition and growth of rat fetal enterocytes was investigated in the absence and presence of 10% (v/v) fetal calf serum. Cholesterol caused a significant reduction of cell number after 6 and 12 h in culture. The fatty acid composition of enterocytes cultured in the presence of serum was also changed by the presence of 20 µM cholesterol. The fatty acid profile was determined by HPLC using fluorescence detection (325 nm excitation and 395 nm emission). Cholesterol (20 µM) increased the proportion (given in percentage of the total fatty acids) of the following fatty acids in cultured cells: lauric (by 42%), oleic (by 34%), linoleic (by 44%) and gamma-linolenic (by 20%) acids and reduced the proportion of palmitic (by 12%), stearic (by 20%), arachidonic (by 21%) and docosahexaenoic (by 44%) acids. In addition to modifying the content of individual fatty acids, cholesterol increased the polyunsaturated/saturated fatty acid ratio from 0.48 to 0.67 and the unsaturation index from 67.12 to 75.30. This is the first evidence that cholesterol modifies fatty acid composition possibly via de novo fatty acid synthesis and desaturation.
Resumo:
The aim of the present study was to investigate the effects of daily intragastric administration of bullfrog oil (oleic, linoleic and palmitoleic acid-rich oil), corresponding to 0.4% of body weight for four weeks, on fatty acid composition and oxidative stress (lipid peroxidation and catalase activity) in mouse liver. The activities of aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), and gamma-glutamyltransferase (GGT), biomarkers of tissue injury, were determined in liver homogenates and serum. The proportions of 18:2n-6, 20:4n-6, 20:5n-3, and 22:6n-3 (polyunsaturated fatty acids, from 37 to 60%) in the total fatty acid content were increased in the liver of the bullfrog oil-treated group (P < 0.05) compared to control. At the same time, a significant decrease in the relative abundance of 14:0, 16:0, and 18:0 (saturated fatty acids, from 49 to 25%) was observed. The hepatic content of thiobarbituric acid reactive substances (TBARS) was increased from 2.3 ± 0.2 to 12.3 ± 0.3 nmol TBA-MDA/mg protein and catalase activity was increased from 840 ± 32 to 1110 ± 45 µmol reduced H2O2 min-1 mg protein-1 in the treated group. Bullfrog oil administration increased AST and ALP activities in the liver (from 234.10 ± 0.12 to 342.84 ± 0.13 and 9.38 ± 0.60 to 20.06 ± 0.27 U/g, respectively) and in serum (from 95.41 ± 6.13 to 120.32 ± 3.15 and 234.75 ± 11.5 to 254.41 ± 2.73 U/l, respectively), suggesting that this treatment induced tissue damage. ALT activity was increased from 287.28 ± 0.29 to 315.98 ± 0.34 U/g in the liver but remained unchanged in serum, whereas the GGT activity was not affected by bullfrog oil treatment. Therefore, despite the interesting modulation of fatty acids by bullfrog oil, a possible therapeutic use requires care since some adverse effects were observed in liver.
Resumo:
To determine the effects of saturated and unsaturated fatty acids in phosphatidylcholine (PC) on macrophage activity, peritoneal lavage cells were cultured in the presence of phosphatidylcholine rich in saturated or unsaturated fatty acids (sat PC and unsat PC, respectively), both used at concentrations of 32 and 64 µM. The treatment of peritoneal macrophages with 64 µM unsat PC increased the production of hydrogen peroxide by 48.3% compared to control (148.3 ± 16.3 vs 100.0 ± 1.8%, N = 15), and both doses of unsat PC increased adhesion capacity by nearly 50%. Moreover, 64 µM unsat PC decreased neutral red uptake by lysosomes by 32.5% compared to the untreated group (67.5 ± 6.8 vs 100.0 ± 5.5%, N = 15), while both 32 and 64 µM unsat PC decreased the production of lipopolysaccharide-elicited nitric oxide by 30.4% (13.5 ± 2.6 vs 19.4 ± 2.5 µM) and 46.4% (10.4 ± 3.1 vs 19.4 ± 2.5 µM), respectively. Unsat PC did not affect anion production in non-stimulated cells or phagocytosis of unopsonized zymosan particles. A different result pattern was obtained for macrophages treated with sat PC. Phorbol 12-miristate 13-acetate-elicited superoxide production and neutral red uptake were decreased by nearly 25% by 32 and 64 µM sat PC, respectively. Sat PC did not affect nitric oxide or hydrogen peroxide production, adhesion capacity or zymosan phagocytosis. Thus, PC modifies macrophage activity, but this effect depends on cell activation state, fatty acid saturation and esterification to PC molecule and PC concentration. Taken together, these results indicate that the fatty acid moiety of PC modulates macrophage activity and, consequently, is likely to affect immune system regulation in vivo.
Resumo:
We determined the influence of fasting (FAST) and feeding (FED) on cholesteryl ester (CE) flow between high-density lipoproteins (HDL) and plasma apoB-lipoprotein and triacylglycerol (TG)-rich emulsions (EM) prepared with TG-fatty acids (FAs). TG-FAs of varying chain lengths and degrees of unsaturation were tested in the presence of a plasma fraction at d > 1.21 g/mL as the source of CE transfer protein. The transfer of CE from HDL to FED was greater than to FAST TG-rich acceptor lipoproteins, 18% and 14%, respectively. However, percent CE transfer from HDL to apoB-containing lipoproteins was similar for FED and FAST HDL. The CE transfer from HDL to EM depended on the EM TG-FA chain length. Furthermore, the chain length of the monounsaturated TG-containing EM showed a significant positive correlation of the CE transfer from HDL to EM (r = 0.81, P < 0.0001) and a negative correlation from EM to HDL (r = -041, P = 0.0088). Regarding the degree of EM TG-FAs unsaturation, among EMs containing C18, the CE transfer was lower from HDL to C18:2 compared to C18:1 and C18:3, 17.7%, 20.7%, and 20%, respectively. However, the CE transfer from EMs to HDL was higher to C18:2 than to C18:1 and C18:3, 83.7%, 51.2%, and 46.3%, respectively. Thus, the EM FA composition was found to be the rate-limiting factor regulating the transfer of CE from HDL. Consequently, the net transfer of CE between HDL and TG-rich particles depends on the specific arrangement of the TG acyl chains in the lipoprotein particle core.
Resumo:
Research on molecular mechanisms of carcinogenesis plays an important role in diagnosing and treating gastric cancer. Metabolic profiling may offer the opportunity to understand the molecular mechanism of carcinogenesis and help to non-invasively identify the potential biomarkers for the early diagnosis of human gastric cancer. The aims of this study were to explore the underlying metabolic mechanisms of gastric cancer and to identify biomarkers associated with morbidity. Gas chromatography/mass spectrometry (GC/MS) was used to analyze the serum metabolites of 30 Chinese gastric cancer patients and 30 healthy controls. Diagnostic models for gastric cancer were constructed using orthogonal partial least squares discriminant analysis (OPLS-DA). Acquired metabolomic data were analyzed by the nonparametric Wilcoxon test to find serum metabolic biomarkers for gastric cancer. The OPLS-DA model showed adequate discrimination between cancer and non-cancer cohorts while the model failed to discriminate different pathological stages (I-IV) of gastric cancer patients. A total of 44 endogenous metabolites such as amino acids, organic acids, carbohydrates, fatty acids, and steroids were detected, of which 18 differential metabolites were identified with significant differences. A total of 13 variables were obtained for their greatest contribution in the discriminating OPLS-DA model [variable importance in the projection (VIP) value >1.0], among which 11 metabolites were identified using both VIP values (VIP >1) and the Wilcoxon test. These metabolites potentially revealed perturbations of glycolysis and of amino acid, fatty acid, cholesterol, and nucleotide metabolism of gastric cancer patients. These results suggest that gastric cancer serum metabolic profiling has great potential in detecting this disease and helping to understand its metabolic mechanisms.
Resumo:
High saturated and trans fatty acid intake, the typical dietary pattern of Western populations, favors a proinflammatory status that contributes to generating insulin resistance (IR). We examined whether the consumption of these fatty acids was associated with IR and inflammatory markers. In this cross-sectional study, 127 non-diabetic individuals were allocated to a group without IR and 56 to another with IR, defined as homeostasis model assessment-IR (HOMA-IR) >2.71. Diet was assessed using 24-h food recalls. Multiple linear regression was employed to test independent associations with HOMA-IR. The IR group presented worse anthropometric, biochemical and inflammatory profiles. Energy intake was correlated with abdominal circumference and inversely with adiponectin concentrations (r = -0.227, P = 0.002), while saturated fat intake correlated with inflammatory markers and trans fat with HOMA-IR (r = 0.160, P = 0.030). Abdominal circumference was associated with HOMA-IR (r = 0.430, P < 0.001). In multiple analysis, HOMA-IR remained associated with trans fat intake (β = 1.416, P = 0.039) and body mass index (β = 0.390, P < 0.001), and was also inversely associated with adiponectin (β = -1.637, P = 0.004). Inclusion of other nutrients (saturated fat and added sugar) or other inflammatory markers (IL-6 and CRP) into the models did not modify these associations. Our study supports that trans fat intake impairs insulin sensitivity. The hypothesis that its effect could depend on transcription factors, resulting in expression of proinflammatory genes, was not corroborated. We speculate that trans fat interferes predominantly with insulin signaling via intracellular kinases, which alter insulin receptor substrates.
Resumo:
Chlorella vulgaris has the gene of n-3 fatty acid desaturase (CvFad3), which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs) or convert n-6 to n-3 PUFAs. The objective of the present study was to examine whether the CvFad3 gene from C. vulgaris can be functionally and efficiently expressed in human breast cancer cells and whether its expression can exert a significant effect on cell fatty acid composition. We inserted the CvFad3 gene into the plasmid pEGFP-C3 to construct the eukaryotic expression vector pEGFP-C3-n-3 and to express the n-3 Fad gene in human breast cancer cells (MCF-7 cells). Transfection of MCF-7 cells with the recombinant vector resulted in a high expression of n-3 fatty acid desaturase. Lipid analysis indicated that the ratio of n-6/n-3 PUFAs was decreased from 6:1 in the control cells to about 1:1 in the cells expressing the n-3 fatty acid desaturase. Accordingly, the CvFad3 gene significantly decreased the ratio of n-6/n-3 PUFAs of the MCF-7 cell membrane. The expression of the CvFad3 gene can decrease cell proliferation and promote cell apoptosis. This study demonstrates that the CvFad3 gene can dramatically balance the ratio of n-6/n-3 PUFAs and may provide an effective approach to the modification of the fatty acid composition of mammalian cells, also providing a basis for potential applications of its transfer in experimental and clinical settings.
Resumo:
Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cultured in medium containing 0.75 mM palmitic acid, mimicking oxidative stress. The effects of 1 mM mogrosides were determined with the dichlorodihydrofluorescein diacetate assay for intracellular reactive oxygen species (ROS) and FITC-Annexin V/PI assay for cell apoptosis. Expression of glucose transporter-2 (GLUT2) and pyruvate kinase was determined by semi-quantitative reverse-transcription polymerase chain reaction. Palmitic acid significantly increased intracellular ROS concentration 2-fold (P<0.05), and decreased expression of GLUT2 (by 60%, P<0.05) and pyruvate kinase (by 80%, P<0.05) mRNAs in NIT-1 cells. Compared with palmitic acid, co-treatment with 1 mM mogrosides for 48 h significantly reduced intracellular ROS concentration and restored mRNA expression levels of GLUT2 and pyruvate kinase. However, mogrosides did not reverse palmitic acid-induced apoptosis in NIT-1 cells. Our results indicate that mogrosides might exert their antioxidant effect by reducing intracellular ROS and regulating expression of genes involved in glucose metabolism. Further research is needed to achieve a better understanding of the signaling pathway involved in the antioxidant effect of mogrosides.
Resumo:
Genetic, Prenatal and Postnatal Determinants of Weight Gain and Obesity in Young Children – The STEPS Study University of Turku, Faculty of Medicine, Department of Paediatrics, University of Turku Doctoral Program of Clinical Investigation (CLIPD), Turku Institute for Child and Youth Research. Conditions of being overweight and obese in childhood are common health problems with longlasting effects into adulthood. Currently 22% of Finnish boys and 12% of Finnish girls are overweight and 4% of Finnish boys and 2% of Finnish girls are obese. The foundation for later health is formed early, even before birth, and the importance of prenatal growth on later health outcomes is widely acknowledged. When the mother is overweight, had high gestational weight gain and disturbances in glucose metabolism during pregnancy, an increased risk of obesity in children is present. On the other hand, breastfeeding and later introduction of complementary foods are associated with a decreased obesity risk. In addition to these, many genetic and environmental factors have an effect on obesity risk, but the clustering of these factors is not extensively studied. The main objective of this thesis was to provide comprehensive information on prenatal and early postnatal factors associated with weight gain and obesity in infancy up to two years of age. The study was part of the STEPS Study (Steps to Healthy Development), which is a follow-up study consisting of 1797 families. This thesis focused on children up to 24 months of age. Altogether 26% of boys and 17% of girls were overweight and 5% of boys and 4% of girls were obese at 24 months of age according to New Finnish Growth references for Children BMI-for-age criteria. Compared to children who remained normal weight, the children who became overweight or obese showed different growth trajectories already at 13 months of age. The mother being overweight had an impact on children’s birth weight and early growth from birth to 24 months of age. The mean duration of breastfeeding was almost 2 months shorter in overweight women in comparison to normal weight women. A longer duration of breastfeeding was protective against excessive weight gain, high BMI, high body weight and high weight-for-length SDS during the first 24 months of life. Breast milk fatty acid composition differed between overweight and normal weight mothers, and overweight women had more saturated fatty acids and less n-3 fatty acids in breast milk. Overweight women also introduced complementary foods to their infants earlier than normal weight mothers. Genetic risk score calculated from 83 obesogenic- and adiposity-related single nucleotide polymorphisms (SNPs) showed that infants with a high genetic risk for being overweight and obese were heavier at 13 months and 24 months of age than infants with a low genetic risk, thus possibly predisposing to later obesity in obesogenic environment. Obesity Risk Score showed that children with highest number of risk factors had almost 6-fold risk of being overweight and obese at 24 months compared to children with lowest number of risk factors. The accuracy of the Obesity Risk Score in predicting overweight and obesity at 24 months was 82%. This study showed that many of the obesogenic risk factors tend to cluster within children and families and that children who later became overweight or obese show different growth trajectories already at a young age. These results highlight the importance of early detection of children with higher obesity risk as well as the importance of prevention measures focused on parents. Keywords: Breastfeeding, Child, Complementary Feeding, Genes, Glucose metabolism, Growth, Infant Nutrition Physiology, Nutrition, Obesity, Overweight, Programming
Resumo:
Buriti and patawa are two endemic palm trees from the Amazon region. Their pulps are traditionally consumed by the local population, but are underused and lesser known worldwide. Nutritional composition, fatty acid and tocopherol contents of the two palm pulps were determined by modern analytical methods: Gas Chromatography (CG) and High Performance Liquid Chromatography (HPLC), based on the standards of AOCS (AMERICAN..., 2002) and AOAC (ASSOCIATION..., 1997), respectively. Buriti and patawa fruit pulps are highly nutritive, with respectively, high fat content (38.4% and 29.1% of dry matter (DM)), protein content (7.6% and 7.4% of DM) and dietary fibers (46% and 44.7% of DM). Buriti pulp can be considered healthy food due its high content of vitamin E (1169 µg.g-1 DM). Patawa pulp is highly oleaginous and its fatty acid composition is very similar to the ones of healthy oils, such as olive oil.
Resumo:
This study aimed to characterize Tamarindus indica L. seeds regarding its composition and to evaluate its antioxidant potential, fatty acid profile and content of tocopherols. In order to obtain the extract, the dried and crushed seeds were extracted with ethanol for 30 minutes in a 1:3 seeds: ethanol ratio under continuous stirring at room temperature. After that, the mixtures were filtered and subjected to roto-evaporation at 40 ºC in order to determine, through direct weighing, the dry matter yields of the extracts. According to the results, Tamarindus indica L. seeds showed high content of total carbohydrates (71.91%) and offered relevant content and antioxidant activity of phenolic compounds. Tamarindus indica L. seeds oil presents high oxidative stability (15.83 hours) and significant total tocopherol content (57.77 mg.kg-1), besides presenting a higher percentage of unsaturated fatty acids - the main component being linolenic (59.61%), which is considered an essential fatty acid.
Resumo:
This study aimed to evaluate the antioxidant potential and fatty acid profile of gabiroba (Campomanesia xanthocarpa Berg) seeds. In order to obtain the extract, the seeds were dried, crushed, and subjected to sequential extraction by maceration and percolation in a modified soxhlet extractor using solvent polarity gradient composed of hexane, chloroform, ethyl acetate, and alcohol, respectively. The extraction time was six hours. The ethanol extract showed the highest antioxidant potential, given by the EC50 value and the amount of total phenolic compounds. High amounts of unsaturated fatty acids were found in the oil studied, especially the oleic acid.
Resumo:
The aim of this study was to determine the nutritional composition (moisture, protein, carbohydrates, and total fat) of some meat products produced in the northeastern Argentina, analyzing fatty acids composition, polyunsaturated/saturated fatty acid ratio PUFA/SFA ratio (polyunsaturated/ saturated fatty acids), n-6/n-3 ratio, and CLA (conjugated linoleic acid) content. Thirty traditional meat products produced by different processes were used. The samples were classified into 4 different categories as follows: salamín (dry cured and fermented sausage), chorizos (raw sausage), chorizo ahumado (cooked and smoked sausage), and morcilla (cooked sausage). From the results obtained it can be said that the total carbohydrate contents of the salamín studied were slightly lower; fat content of raw chorizo was significantly lower, and protein content of chorizo ahumado was significantly higher than those comparison from databases from other regions of Argentina, USA, and Spain. Except for chorizo, which has a value lower than 0.4, the PUFA/SFA-stearic ratio of the other products were a little higher than those reported by other researchers. CLA (Conjugated linoleic acid) contents between 0.03% and 0.19% were detected. The results obtained indicate that salamín produced in northeastern Argentina, Chaco state, shows high protein and PUFA (Polyunsaturated fatty acids) contents, and low atherogenic and thrombogenic indexes, which makes it a more healthful product than those of similar composition produced in other countries.