967 resultados para Extracellular protease


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral deposition of the amyloid β protein (Aβ) is an early and invariant feature of Alzheimer disease (AD). Whereas the 40-amino acid form of Aβ (Aβ40) accounts for ≈90% of all Aβ normally released from cells, it appears to contribute only to later phases of the pathology. In contrast, the longer more amyloidogenic 42-residue form (Aβ42), accounting for only ≈10% of secreted Aβ, is deposited in the earliest phase of AD and remains the major constituent of most amyloid plaques throughout the disease. Moreover, its levels have been shown to be increased in all known forms of early-onset familial AD. Thus, inhibition of Aβ42 production is a prime therapeutic goal. The same protease, γ-secretase, is assumed to generate the C termini of both Aβ40 and Aβ42. Herein, we analyze the effect of the compound MDL 28170, previously suggested to inhibit γ-secretase, on β-amyloid precursor protein processing. By immunoprecipitating conditioned medium of different cell lines with various Aβ40- and Aβ42-specific antibodies, we demonstrate a much stronger inhibition of the γ-secretase cleavage at residue 40 than of that at residue 42. These data suggest that different proteases generate the Aβ40 and Aβ42 C termini. Further, they raise the possibility of identifying compounds that do not interfere with general β-amyloid precursor protein metabolism, including Aβ40 production, but specifically block the generation of the pathogenic Aβ42 peptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focally evoked calcium waves in astrocyte cultures have been thought to propagate by gap-junction-mediated intercellular passage of chemical signal(s). In contrast to this mechanism we observed isolated astrocytes, which had no physical contact with other astrocytes in the culture, participating in a calcium wave. This observation requires an extracellular route of astrocyte signaling. To directly test for extracellular signaling we made cell-free lanes 10–300 μm wide in confluent cultures by deleting astrocytes with a glass pipette. After 4–8 hr of recovery, regions of confluent astrocytes separated by lanes devoid of cells were easily located. Electrical stimulation was used to initiate calcium waves. Waves crossed narrow (<120 μm) cell-free lanes in 15 of 36 cases, but failed to cross lanes wider than 120 μm in eight of eight cases. The probability of crossing narrow lanes was not correlated with the distance from the stimulation site, suggesting that cells along the path of the calcium wave release the extracellular messenger(s). Calculated velocity across the acellular lanes was not significantly different from velocity through regions of confluent astrocytes. Focal superfusion altered both the extent and the direction of calcium waves in confluent regions. These data indicate that extracellular signals may play a role in astrocyte–astrocyte communication in situ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal migration is a critical phase of brain development, where defects can lead to severe ataxia, mental retardation, and seizures. In the developing cerebellum, granule neurons turn on the gene for tissue plasminogen activator (tPA) as they begin their migration into the cerebellar molecular layer. Granule neurons both secrete tPA, an extracellular serine protease that converts the proenzyme plasminogen into the active protease plasmin, and bind tPA to their cell surface. In the nervous system, tPA activity is correlated with neurite outgrowth, neuronal migration, learning, and excitotoxic death. Here we show that compared with their normal counterparts, mice lacking the tPA gene (tPA−/−) have greater than 2-fold more migrating granule neurons in the cerebellar molecular layer during the most active phase of granule cell migration. A real-time analysis of granule cell migration in cerebellar slices of tPA−/− mice shows that granule neurons are migrating 51% as fast as granule neurons in slices from wild-type mice. These findings establish a direct role for tPA in facilitating neuronal migration, and they raise the possibility that late arriving neurons may have altered synaptic interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dipeptidyl peptidase IV (EC 3.4.14.5; DPP IV), also known as the leukocyte differentiation antigen CD26 when found as an extracellular membrane-bound proline specific serine protease, cleaves a dipeptide from the N terminus of a polypeptide chain containing a proline residue in the penultimate position. Here we report that known (Z)-Ala-ψ[CF=C]-Pro dipeptide isosteres 1 and 2, which contain O-acylhydroxylamines, were isolated as diastereomeric pairs u-1, l-1, and l-2. The effect of each diastereomeric pair as an inhibitor of human placental dipeptidyl peptidase DPP IV has been examined. The inhibition of DPP IV by these compounds is rapid and efficient. The diastereomeric pair u-1 exhibits very potent inhibitory activity with a Ki of 188 nM. Fluoroolefin containing N-peptidyl-O-hydroxylamine peptidomimetics, by virtue of their inhibitory potency and stability, are superior to N-peptidyl-O-hydroxylamine inhibitors derived from an Ala-Pro dipeptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been assumed that HIV-1 evolution is best described by deterministic evolutionary models because of the large population size. Recently, however, it was suggested that the effective population size (Ne) may be rather small, thereby allowing chance to influence evolution, a situation best described by a stochastic evolutionary model. To gain experimental evidence supporting one of the evolutionary models, we investigated whether the development of resistance to the protease inhibitor ritonavir affected the evolution of the env gene. Sequential serum samples from five patients treated with ritonavir were used for analysis of the protease gene and the V3 domain of the env gene. Multiple reverse transcription–PCR products were cloned, sequenced, and used to construct phylogenetic trees and to calculate the genetic variation and Ne. Genotypic resistance to ritonavir developed in all five patients, but each patient displayed a unique combination of mutations, indicating a stochastic element in the development of ritonavir resistance. Furthermore, development of resistance induced clear bottleneck effects in the env gene. The mean intrasample genetic variation, which ranged from 1.2% to 5.7% before treatment, decreased significantly (P < 0.025) during treatment. In agreement with these findings, Ne was estimated to be very small (500–15,000) compared with the total HIV-1 RNA copy number. This study combines three independent observations, strong population bottlenecking, small Ne, and selection of different combinations of protease-resistance mutations, all of which indicate that HIV-1 evolution is best described by a stochastic evolutionary model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What determines the nuclear organization within a cell and whether this organization itself can impose cellular function within a tissue remains unknown. To explore the relationship between nuclear organization and tissue architecture and function, we used a model of human mammary epithelial cell acinar morphogenesis. When cultured within a reconstituted basement membrane (rBM), HMT-3522 cells form polarized and growth-arrested tissue-like acini with a central lumen and deposit an endogenous BM. We show that rBM-induced morphogenesis is accompanied by relocalization of the nuclear matrix proteins NuMA, splicing factor SRm160, and cell cycle regulator Rb. These proteins had distinct distribution patterns specific for proliferation, growth arrest, and acini formation, whereas the distribution of the nuclear lamina protein, lamin B, remained unchanged. NuMA relocalized to foci, which coalesced into larger assemblies as morphogenesis progressed. Perturbation of histone acetylation in the acini by trichostatin A treatment altered chromatin structure, disrupted NuMA foci, and induced cell proliferation. Moreover, treatment of transiently permeabilized acini with a NuMA antibody led to the disruption of NuMA foci, alteration of histone acetylation, activation of metalloproteases, and breakdown of the endogenous BM. These results experimentally demonstrate a dynamic interaction between the extracellular matrix, nuclear organization, and tissue phenotype. They further show that rather than passively reflecting changes in gene expression, nuclear organization itself can modulate the cellular and tissue phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prion diseases are natural transmissible neurodegenerative disorders in humans and animals. They are characterized by the accumulation of a protease-resistant scrapie-associated prion protein (PrPSc) of the host-encoded cellular prion protein (PrPC) mainly in the central nervous system. Polymorphisms in the PrP gene are linked to differences in susceptibility for prion diseases. The mechanisms underlying these effects are still unknown. Here we describe studies of the influence of sheep PrP polymorphisms on the conversion of PrPC into protease-resistant forms. In a cell-free system, sheep PrPSc induced the conversion of sheep PrPC into protease-resistant PrP (PrP-res) similar or identical to PrPSc. Polymorphisms present in either PrPC or PrPSc had dramatic effects on the cell-free conversion efficiencies. The PrP variant associated with a high susceptibility to scrapie and short survival times of scrapie-affected sheep was efficiently converted into PrP-res. The wild-type PrP variant associated with a neutral effect on susceptibility and intermediate survival times was converted with intermediate efficiency. The PrP variant associated with scrapie resistance and long survival times was poorly converted. Thus the in vitro conversion characteristics of the sheep PrP variants reflect their linkage with scrapie susceptibility and survival times of scrapie-affected sheep. The modulating effect of the polymorphisms in PrPC and PrPSc on the cell-free conversion characteristics suggests that, besides the species barrier, polymorphism barriers play a significant role in the transmissibility of prion diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein acylation is an important way in which a number of proteins with a variety of functions are modified. The physiological role of the acylation of cellular proteins is still poorly understood. Covalent binding of fatty acids to nonintegral membrane proteins is thought to produce transient or permanent enhancement of the association of the polypeptide chains with biological membranes. In this paper, we investigate the functional role for the palmitoylation of an atypical membrane-bound protein, yeast protoporphyrinogen oxidase, which is the molecular target of diphenyl ether-type herbicides. Palmitoylation stabilizes an active heat- and protease-resistant conformation of the protein. Palmitoylation of protoporphyrinogen oxidase has been demonstrated to occur in vivo both in yeast cells and in a heterologous bacterial expression system, where it may be inhibited by cerulenin leading to the accumulation of degradation products of the protein. The thiol ester linking palmitoleic acid to the polypeptide chain was shown to be sensitive to hydrolysis by hydroxylamine and also by the widely used serine-protease inhibitor phenylmethylsulfonyl fluoride.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In antigen presentation to CD4+ T cells, proteins are degraded to peptide fragments and loaded onto class II MHC molecules in a process involving the peptide exchange factors H-2M (murine) or HLA-DM (human). In many antigen-presenting cells these processes occur in intracellular endosomal compartments, where peptides are generated and loaded onto class II MHC proteins for subsequent transport to the surface and presentation to T cells. Here, we provide evidence for an additional antigen-processing pathway in immature dendritic cells (DC). Immature DC express at the cell surface empty or peptide-receptive class II MHC molecules, as well as H-2M or HLA-DM. Secreted DC proteases act extracellularly to process intact proteins into antigenic peptides. Peptides produced by such activity are efficiently loaded onto cell surface class II MHC molecules. Together these elements comprise an unusual extracellular presentation pathway in which antigen processing and peptide loading can occur entirely outside of the cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The irreversible proteolytic mechanism by which protease-activated receptor-1 (PAR1), the G protein-coupled receptor (GPCR) for thrombin, is activated raises the question of how it is shut off. Like classic GPCRs, activated PAR1 is rapidly phosphorylated and internalized, but unlike classic GPCRs, which recycle, internalized PAR1 is sorted to lysosomes. A chimeric PAR1 bearing the substance P receptor’s cytoplasmic carboxyl tail sequestered and recycled like wild-type substance P receptor. In cells expressing this chimera, signaling in response to the PAR1-activating peptide SFLLRN ceased as expected upon removal of this agonist. Strikingly, however, when the chimera was activated proteolytically by thrombin, signaling persisted even after thrombin was removed. This persistent signaling was apparently due to “resignaling” by previously activated receptors that had internalized and recycled back to the cell surface. Thus the cytoplasmic carboxyl tail of PAR1 specifies an intracellular sorting pattern that is linked to its signaling properties. In striking contrast to most GPCRs, sorting of activated PAR1 to lysosomes rather than recycling is critical for terminating PAR1 signaling—a trafficking solution to a signaling problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently reported that HIV-1 Vif (virion infectivity factor) inhibits HIV-1 protease in vitro and in bacteria, suggesting that it may serve as the basis for the design of new protease inhibitors and treatment for HIV-1 infection. To evaluate this possibility, we synthesized peptide derivatives from the region of Vif, which inhibits protease, and tested their activity on protease. In an assay of cleavage of virion-like particles composed of HIV-1 Gag precursor polyprotein, full-length recombinant Vif, and a peptide consisting of residues 21–65 of Vif, but not a control peptide or BSA, inhibited protease activity. Vif21–65 blocked protease at a molar ratio of two to one. We then tested this peptide and a smaller peptide, Vif41–65, for their effects on HIV-1 infection of peripheral blood lymphocytes. Both Vif peptides inhibited virus expression below the limit of detection, but control peptides had no effect. To investigate its site of action, Vif21–65 was tested for its effect on Gag cleavage by protease during HIV-1 infection. We found that commensurate with its reduction of virus expression, Vif21–65 inhibited the cleavage of the polyprotein p55 to mature p24. These results are similar to those obtained by using Ro 31–8959, a protease inhibitor in clinical use. We conclude that Vif-derived peptides inhibit protease during HIV-1 infection and may be useful for the development of new protease inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms responsible for the induction of matrix-degrading proteases during lung injury are ill defined. Macrophage-derived mediators are believed to play a role in regulating synthesis and turnover of extracellular matrix at sites of inflammation. We find a localized increase in the expression of the rat interstitial collagenase (MMP-13; collagenase-3) gene from fibroblastic cells directly adjacent to macrophages within silicotic rat lung granulomas. Conditioned medium from macrophages isolated from silicotic rat lungs was found to induce rat lung fibroblast interstitial collagenase gene expression. Conditioned medium from primary rat lung macrophages or J774 monocytic cells activated by particulates in vitro also induced interstitial collagenase gene expression. Tumor necrosis factor-α (TNF-α) alone did not induce interstitial collagenase expression in rat lung fibroblasts but did in rat skin fibroblasts, revealing tissue specificity in the regulation of this gene. The activity of the conditioned medium was found to be dependent on the combined effects of TNF-α and 12-lipoxygenase-derived arachidonic acid metabolites. The fibroblast response to this conditioned medium was dependent on de novo protein synthesis and involved the induction of nuclear activator protein-1 activity. These data reveal a novel requirement for macrophage-derived 12-lipoxygenase metabolites in lung fibroblast MMP induction and provide a mechanism for the induction of resident cell MMP gene expression during inflammatory lung processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin-like growth factor–binding protein-5 (IGFBP-5) has been shown to bind to fibroblast extracellular matrix (ECM). Extracellular matrix binding of IGFBP-5 leads to a decrease in its affinity for insulin-like growth factor-I (IGF-I), which allows IGF-I to better equilibrate with IGF receptors. When the amount of IGFBP-5 that is bound to ECM is increased by exogenous addition, IGF-I’s effect on fibroblast growth is enhanced. In this study we identified the specific basic residues in IGFBP-5 that mediate its binding to porcine smooth-muscle cell (pSMC) ECM. An IGFBP-5 mutant containing alterations of basic residues at positions 211, 214, 217, and 218 had the greatest reduction in ECM binding, although three other mutants, R214A, R207A/K211N, and K202A/R206N/R207A, also had major decreases. In contrast, three other mutants, R201A/K202N/R206N/R208A, and K217N/R218A and K211N, had only minimal reductions in ECM binding. This suggested that residues R207 and R214 were the most important for binding, whereas alterations in K211 and R218, which align near them, had minimal effects. To determine the effect of a reduction in ECM binding on the cellular replication response to IGF-I, pSMCs were transfected with the mutant cDNAs that encoded the forms of IGFBPs with the greatest changes in ECM binding. The ECM content of IGFBP-5 from cultures expressing the K211N, R214A, R217A/R218A, and K202A/R206N/R207A mutants was reduced by 79.6 and 71.7%, respectively, compared with cells expressing the wild-type protein. In contrast, abundance of the R201A/K202N/R206N/R208A mutant was reduced by only 14%. Cells expressing the two mutants with reduced ECM binding had decreased DNA synthesis responses to IGF-I, but the cells expressing the R201A/K202N/R206N/R208A mutant responded well to IGF-I. The findings suggest that specific basic amino acids at positions 207 and 214 mediate the binding of IGFBP-5 to pSMC/ECM. Smooth-muscle cells that constitutively express the mutants that bind weakly to ECM are less responsive to IGF-I, suggesting that ECM binding of IGFBP-5 is an important variable that determines cellular responsiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attachment of HeLa cells to gelatin induces the release of arachidonic acid (AA), which is essential for cell spreading. HeLa cells spreading in the presence of extracellular Ca2+ released more AA and formed more distinctive lamellipodia and filopodia than cells spreading in the absence of Ca2+. Addition of exogenous AA to cells spreading in the absence of extracellular Ca2+ restored the formation of lamellipodia and filopodia. To investigate the role of cytosolic phospholipase A2 (cPLA2) in regulating the differential release of AA and subsequent formation of lamellipodia and filopodia during HeLa cell adhesion, cPLA2 phosphorylation and translocation from the cytosol to the membrane were evaluated. During HeLa cell attachment and spreading in the presence of Ca2+, all cPLA2 became phosphorylated within 2 min, which is the earliest time cell attachment could be measured. In the absence of extracellular Ca2+, the time for complete cPLA2 phosphorylation was lengthened to <4 min. Maximal translocation of cPLA2 from cytosol to membrane during adhesion of cells to gelatin was similar in the presence or absence of extracellular Ca2+ and remained membrane associated throughout the duration of cell spreading. The amount of total cellular cPLA2 translocated to the membrane in the presence of extracellular Ca2+ went from <20% for unspread cells to >95% for spread cells. In the absence of Ca2+ only 55–65% of the total cPLA2 was translocated to the membrane during cell spreading. The decrease in the amount translocated could account for the comparable decrease in the amount of AA released by cells during spreading without extracellular Ca2+. Although translocation of cPLA2 from cytosol to membrane was Ca2+ dependent, phosphorylation of cPLA2 was attachment dependent and could occur both on the membrane and in the cytosol. To elucidate potential activators of cPLA2, the extracellular signal-related protein kinase 2 (ERK2) and protein kinase C (PKC) were investigated. ERK2 underwent a rapid phosphorylation upon early attachment followed by a dephosphorylation. Both rates were enhanced during cell spreading in the presence of extracellular Ca2+. Treatment of cells with the ERK kinase inhibitor PD98059 completely inhibited the attachment-dependent ERK2 phosphorylation but did not inhibit cell spreading, cPLA2 phosphorylation, translocation, or AA release. Activation of PKC by phorbol ester (12-O-tetradecanoylphorbol-13-acetate) induced and attachment-dependent phosphorylation of both cPLA2 and ERK2 in suspension cells. However, in cells treated with the PKC inhibitor Calphostin C before attachment, ERK2 phosphorylation was inhibited, whereas cPLA2 translocation and phosphorylation remained unaffected. In conclusion, although cPLA2-mediated release of AA during HeLa cell attachment to a gelatin substrate was essential for cell spreading, neither ERK2 nor PKC appeared to be responsible for the attachment-induced cPLA2 phosphorylation and the release of AA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stearoyl-coenzyme A desaturase (SCD) is a key regulator of membrane fluidity, turns over rapidly, and represents a prototype for selective degradation of resident proteins of the endoplasmic reticulum. Using detergent-solubilized, desaturase-induced rat liver microsomes we have characterized a protease that degrades SCD. Degradation of SCD in vitro is highly selective, has a half-life of 3–4 h, and generates a 20-kDa C-terminal fragment of SCD. The N terminus of the 20-kDa fragment was identified as Phe177. The cleavage site occurs in a conserved 12-residue hydrophobic segment of SCD flanked by clusters of basic residues. The SCD protease remains associated with microsomal membranes after peripheral and lumenal proteins have been selectively removed. SCD protease is present in normal rat liver microsomes and cleaves purified SCD. We conclude that rapid turnover of SCD involves a constitutive microsomal protease with properties of an integral membrane protein.