789 resultados para Exploratory structural equation modelling
Resumo:
In this paper, we prove the exponential decay as time goes to infinity of regular solutions of the problem for the Kirchhoff wave equation with nonlocal condition and weak dampingu(tt) - M (\\delU\\(2)(2)) Deltau + integral(0)(t) g(t - s)Deltau(.,s) ds + alphau(t) = 0, in (Q) over cap,where (Q) over cap is a noncylindrical domain of Rn+1 (n greater than or equal to 1) with the lateral boundary (&USigma;) over cap and alpha is a positive constant. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the present work, aquatic humic substances (HS) were extracted by use of adsorbent XAD 8 and the acid humic fraction (AH) was separated throught acidification. After being purified by Hyphan resin and dialyze, the aquatic AH was characterized using Fourier-transform infrared spectroscopy and elemental analysis. The influence of the aquatic HA and electrolyte concentrations, pH and aquatic AH-metal complexation time on the conformation was investigated using UV/Vis spectroscopic studies, employing the equation suggested by Doty and Steiner. The results indicated that the acid humic flexible macromolecule assumes a condensed form at acid and alkaline pH. Other factors favoring condensed conformations are longer metal complexation time (ageing) and higher aquatic AH and electrolyte concentrations. Thus considering the strong influence of the investigated parameters in the structural conformation of the humic macromolecule, we conclude that studies using UV/Vis spectroscopy to estimate the concentration, aromaticity, humification degree of the aquatic AH and so on, require rigorous control over the experimental conditions employed to provide a correct interpretation of the analytical results. ©2006 Sociedade Brasileira de Química.
Resumo:
Banana is an agricultural product of great economic importance for various developing countries. The relationship between moisture content and water activity provides useful information for the processing and storage of banana waste. The water activity and moisture content of three banana (Mussa spp. Haploid AAB cv. Nanica) waste items were analyzed to determine the desorption isotherms at six different temperatures (20, 30, 40, 50, 60 and 70°C). The desorption isotherms of the peel, pedicel and pulp of overripe bananas were determined in wide ranges of moisture content (0.001-6.360 kg kg-1 d.b.) and water activity (0.02-0.907). The theoretical GAB model was used for modelling the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to compute the isosteric heat of sorption, the differential entropy and Gibbs' free energy by way of the GAB model when the effect of temperature on the hygroscopic equilibrium was considered. © 2012 de Gruyter. All rights reserved.
Resumo:
Modelling polymers with side chains is always a challenge once the degrees of freedom are very high. In this study, we present a successful methodology to model poly[2-methoxy-5-(2′-ethyl-hexyloxy)-p-phenylenevinylene] (MEH-PPV) and poly[3-hexylthiophene] (P3HT) in solutions, taking into account the influence of side chains on the polymer conformation. Molecular dynamics and semi-empirical quantum mechanical methods were used for structure optimisation and evaluation of optical properties. The methodology allows to describe structural and optical characteristics of the polymers in a satisfactory way, as well as to evaluate some usual simplifications adopted for modelling these systems. Effective conjugation lengths of 8-14.6 and 21 monomers were obtained for MEH-PPV and P3HT, respectively, in accordance with experimental findings. In addition, anti/syn conformations of these polymers could be predicted based on intrinsic interactions of the lateral branches. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
In this paper, an application is considered of both active and passive controls, to suppression of chaotic behavior of a simple portal frame, under the excitation of an unbalanced DC motor, with limited power supply (non-ideal problem). The adopted active control strategy consists of two controls: the nonlinear (feedforward) in order to keep the controlled system in a desirable orbit, and the feedback control, which may be obtained by considering state-dependent Riccati equation control to bringing the system into the desired orbit using a magneto rheological (MR) damper. To control the electric current applied in control of the MR damper the Bouc-Wen mathematical model was used to the MR damper. The passive control was obtained by means of a nonlinear sub-structure with properties of nonlinear energy sink. Simulations showed the efficiency of both the passive control (energy pumping) and active control strategies in the suppression of the chaotic behavior. © The Author(s) 2012.
Resumo:
In this paper we study the behavior of a structure vulnerable to excessive vibrations caused by an non-ideal power source. To perform this study, the mathematical model is proposed, derive the equations of motion for a simple plane frame excited by an unbalanced rotating machine with limited power (non-ideal motor). The non-linear and non-ideal dynamics in system is demonstrated with a chaotic behavior. We use a State-Dependent Riccati Equation Control technique for regulate the chaotic behavior, in order to obtain a periodic orbit small and to decrease its amplitude. The simulation results show the identification by State-Dependent Riccati Equation Control is very effective. © 2013 Academic Publications, Ltd.
Resumo:
Physiological potential characterization of seed lots is usually performed by germination and vigor tests; however, the choice of a single test does not reflect such potential, once each test assesses seeds of differentiated mode. Multivariate techniques allow understanding structural dependence contained in each variable, as well as characterize groups of seed lots according to specific standards. The study aimed at evaluating variability among soybean seed lots and discriminate these lots by multivariate exploratory techniques as function of seed vigor. Experiment was performed with 20 soybean seed lots (10 lots cv. BRS Valiosa RR and 10 lots cv. M-SOY 7908 RR). Seed physiological potential was assessed by testing for: germination (standard, and under different water availability); vigor (accelerated aging and electrical conductivity); and field seedling emergence. Cluster analysis of seed lots, as well as Principal Component Analysis was performed using data obtained on all tests. Multivariate techniques allowed stratifying seed lots into two distinct groups. Principal Component Analysis showed that values obtained for variables: field seedling emergence, accelerated aging, and germination under different water availability were linked to BRS Valiosa RR; while to variables germination and electrical conductivity, were linked to M-SOY 7908 RR.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present paper aims at contributing to a discussion, opened by several authors, on the proper equation of motion that governs the vertical collapse of buildings. The most striking and tragic example is that of the World Trade Center Twin Towers, in New York City, about 10 years ago. This is a very complex problem and, besides dynamics, the analysis involves several areas of knowledge in mechanics, such as structural engineering, materials sciences, and thermodynamics, among others. Therefore, the goal of this work is far from claiming to deal with the problem in its completeness, leaving aside discussions about the modeling of the resistive load to collapse, for example. However, the following analysis, restricted to the study of motion, shows that the problem in question holds great similarity to the classic falling-chain problem, very much addressed in a number of different versions as the pioneering one, by von Buquoy or the one by Cayley. Following previous works, a simple single-degree-of-freedom model was readdressed and conceptually discussed. The form of Lagrange's equation, which leads to a proper equation of motion for the collapsing building, is a general and extended dissipative form, which is proper for systems with mass varying explicitly with position. The additional dissipative generalized force term, which was present in the extended form of the Lagrange equation, was shown to be derivable from a Rayleigh-like energy function. DOI: 10.1061/(ASCE)EM.1943-7889.0000453. (C) 2012 American Society of Civil Engineers.
Resumo:
Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.
Resumo:
A correlated two-body basis function is used to describe the three-dimensional bosonic clusters interacting via two-body van der Waals potential. We calculate the ground state and the zero orbital angular momentum excited states for Rb-N clusters with up to N = 40. We solve the many-particle Schrodinger equation by potential harmonics expansion method, which keeps all possible two-body correlations in the calculation and determines the lowest effective many-body potential. We study energetics and structural properties for such diffuse clusters both at dimer and tuned scattering length. The motivation of the present study is to investigate the possibility of formation of N-body clusters interacting through the van der Waals interaction. We also compare the system with the well studied He, Ne, and Ar clusters. We also calculate correlation properties and observe the generalised Tjon line for large cluster. We test the validity of the shape-independent potential in the calculation of the ground state energy of such diffuse cluster. These are the first such calculations reported for Rb clusters. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730972]