884 resultados para Event perception
Resumo:
This paper describes experiments relating to the perception of the roughness of simulated surfaces via the haptic and visual senses. Subjects used a magnitude estimation technique to judge the roughness of “virtual gratings” presented via a PHANToM haptic interface device, and a standard visual display unit. It was shown that under haptic perception, subjects tended to perceive roughness as decreasing with increased grating period, though this relationship was not always statistically significant. Under visual exploration, the exact relationship between spatial period and perceived roughness was less well defined, though linear regressions provided a reliable approximation to individual subjects’ estimates.
Resumo:
We compare rain event size distributions derived from measurements in climatically different regions, which we find to be well approximated by power laws of similar exponents over broad ranges. Differences can be seen in the large-scale cutoffs of the distributions. Event duration distributions suggest that the scale-free aspects are related to the absence of characteristic scales in the meteorological mesoscale.
Resumo:
Various methods of assessment have been applied to the One Dimensional Time to Explosion (ODTX) apparatus and experiments with the aim of allowing an estimate of the comparative violence of the explosion event to be made. Non-mechanical methods used were a simple visual inspection, measuring the increase in the void volume of the anvils following an explosion and measuring the velocity of the sound produced by the explosion over 1 metre. Mechanical methods used included monitoring piezo-electric devices inserted in the frame of the machine and measuring the rotational velocity of a rotating bar placed on the top of the anvils after it had been displaced by the shock wave. This last method, which resembles original Hopkinson Bar experiments, seemed the easiest to apply and analyse, giving relative rankings of violence and the possibility of the calculation of a “detonation” pressure.
Resumo:
Readers need to easily discriminate between different letters, so typefaces are designed to make these differences distinctive. But there is also a uniformity of style within a typeface. These styles are recognised by typographic designers and may be categorised to enable more efficient discrimination among typefaces. The manner in which designers perceive typefaces is explored using the paradigm of Categorical Perception (CP). A continuum of fonts is created by interpolating between two typefaces and two tasks (identification and discrimination) are used to test for CP. As the application of CP to typefaces is a new approach, various methodological issues are pursued. The experiments reveal that the conditions required to demonstrate CP are quite specific and CP was only evident in Times and Helvetica and not Garamond and Bodoni. Possible reasons for this difference are the characteristics of the two typefaces and their context of use. Speculation as to the purpose of CP in non-designers raises the under-researched question of how we identify letters in different typefaces when reading.
Resumo:
An evaluation of the 'Barefoot in the Head' performance event, I co-curated with Alun Rowlands and Mark Beasley, at Bruce High Quality Foundation University, New York, as part of Performa 09 New York, 12 November 2009 - an examination of my own performance and the other performances occurring simultaneously at the event.
Resumo:
This article presents the results of a study that explored the human side of the multimedia experience. We propose a model that assesses quality variation from three distinct levels: the network, the media and the content levels; and from two views: the technical and the user perspective. By facilitating parameter variation at each of the quality levels and from each of the perspectives, we were able to examine their impact on user quality perception. Results show that a significant reduction in frame rate does not proportionally reduce the user's understanding of the presentation independent of technical parameters, that multimedia content type significantly impacts user information assimilation, user level of enjoyment, and user perception of quality, and that the device display type impacts user information assimilation and user perception of quality. Finally, to ensure the transfer of information, low-level abstraction (network-level) parameters, such as delay and jitter, should be adapted; to maintain the user's level of enjoyment, high-level abstraction quality parameters (content-level), such as the appropriate use of display screens, should be adapted.
Resumo:
Our research investigates the impact that hearing has on the perception of digital video clips, with and without captions, by discussing how hearing loss, captions and deafness type affects user QoP (Quality of Perception). QoP encompasses not only a user's satisfaction with the quality of a multimedia presentation, but also their ability to analyse, synthesise and assimilate informational content of multimedia . Results show that hearing has a significant effect on participants’ ability to assimilate information, independent of video type and use of captions. It is shown that captions do not necessarily provide deaf users with a ‘greater level of information’ from video, but cause a change in user QoP, depending on deafness type, which provides a ‘greater level of context of the video’. It is also shown that post-lingual mild and moderately deaf participants predict less accurately their level of information assimilation than post-lingual profoundly deaf participants, despite residual hearing. A positive correlation was identified between level of enjoyment (LOE) and self-predicted level of information assimilation (PIA), independent of hearing level or hearing type. When this is considered in a QoP quality framework, it puts into question how the user perceives certain factors, such as ‘informative’ and ‘quality’.