890 resultados para Euler-Heisenberg-like model
Resumo:
The processing of meats at the factory level can trigger the onset of lipid oxidation, which can lead to meat quality deterioration. Warmed over flavor is an off-flavor, which is associated with oxidative deterioration in meat. To avoid or delay the auto-oxidation process in meat products, synthetic and natural antioxidants have been successfully used. Grape (Vitis Vinifera) is of special interest due to its high content of phenolic compounds. Grape seed extract sold commercially as a dietary supplement, has the potential to reduce lipid oxidation and WOF in cooked ground beef when added at 1%. The objective of study 1 was to compare the antioxidant activity of natural antioxidants including grape seed extract and some herbs belonging to the Lamiaciae family: rosemary (Rosmarinus Officinalis), sage (Salvia Officinalis) and oregano (Origanum Vulgare) with commercial synthetic antioxidants like BHT, BHA, propyl gallate and ascorbic acid using the ORAC assay. All sample solutions were prepared to contain 1.8 gm sample/10 ml solvent. The highest antioxidant activity was observed for the grape seed extract sample (359.75 µM TE), while the lowest was observed for BHA, propyl gallate and rosemary also showed higher antioxidant potential with ORAC values above 300 μmol TE/g. ORAC values obtained for ascorbic acid and Sage were between 250-300μ mol TE/g while lowest values were obtained for Butylated Hydroxytoluene (28.50 µM TE). Based on the high ORAC values obtained for grape seed extract, we can conclude that byproducts of the wine/grape industry have antioxidant potential comparable to or better than those present in synthetic counterparts. The objective of study 2 was to compare three levels of grape seed extract (GSE) to commonly used antioxidants in a pre-cooked, frozen, stored beef and pork sausage model system. Antioxidants added for comparison with control included grape seed extract (100, 300, 500 ppm), ascorbic acid (AA, 100 ppm of fat) and propyl gallate (PG, 100 ppm of fat). Product was formed into rolls, frozen, sliced into patties, cooked on a flat griddle to 70C, overwrapped in PVC, and then frozen at –18C for 4 months. GSE- and PG-containing samples retained their fresh cooked beef odor and flavor longer (p<0.05) than controls during storage. Rancid odor and flavor scores of GSE-containing samples were lower (p<0.05) than those of controls after 4 months of storage. The L* value of all samples increased (p<0.05) during storage. Thiobarbituric acid reactive substances (TBARS) of the control and AA-containing samples increased (p<0.05); those of GSE-containing samples did not change significantly (p>0.05) over the storage period.
Resumo:
This sheet gives tips on how to be a healthy influence on your children. You can do many things to help your children develop healthy eating habits for life. Offering a variety of foods helps children get the nutrients they need from every food group. They will also be more likely to try new foods and to like more foods. When children develop a taste for many types of foods, it’s easier to plan family meals. Cook together, eat together, talk together, and make mealtime a family time!
Resumo:
A new type of space debris was recently discovered by Schildknecht in near -geosynchronous orbit (GEO). These objects were later identified as exhibiting properties associated with High Area-to-Mass ratio (HAMR) objects. According to their brightness magnitudes (light curve), high rotation rates and composition properties (albedo, amount of specular and diffuse reflection, colour, etc), it is thought that these objects are multilayer insulation (MLI). Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that their shapes are easily deformed leading to changes in the Area-to-Mass ratio (AMR) over time. This thesis proposes a simple effective flexible model of the thin, deformable membrane with two different methods. Firstly, this debris is modelled with Finite Element Analysis (FEA) by using Bernoulli-Euler theory called “Bernoulli model”. The Bernoulli model is constructed with beam elements consisting 2 nodes and each node has six degrees of freedom (DoF). The mass of membrane is distributed in beam elements. Secondly, the debris based on multibody dynamics theory call “Multibody model” is modelled as a series of lump masses, connected through flexible joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account with lump masses in the joints. The dynamic equations for the masses, including the constraints defined by the connecting rigid rod, are derived using fundamental Newtonian mechanics. The physical properties of both flexible models required by the models (membrane density, reflectivity, composition, etc.), are assumed to be those of multilayer insulation. Both flexible membrane models are then propagated together with classical orbital and attitude equations of motion near GEO region to predict the orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field, luni-solar gravitational fields and self-shadowing effect. These results are then compared to two rigid body models (cannonball and flat rigid plate). In this investigation, when comparing with a rigid model, the evolutions of orbital elements of the flexible models indicate the difference of inclination and secular eccentricity evolutions, rapid irregular attitude motion and unstable cross-section area due to a deformation over time. Then, the Monte Carlo simulations by varying initial attitude dynamics and deformed angle are investigated and compared with rigid models over 100 days. As the results of the simulations, the different initial conditions provide unique orbital motions, which is significantly different in term of orbital motions of both rigid models. Furthermore, this thesis presents a methodology to determine the material dynamic properties of thin membranes and validates the deformation of the multibody model with real MLI materials. Experiments are performed in a high vacuum chamber (10-4 mbar) replicating space environment. A thin membrane is hinged at one end but free at the other. The free motion experiment, the first experiment, is a free vibration test to determine the damping coefficient and natural frequency of the thin membrane. In this test, the membrane is allowed to fall freely in the chamber with the motion tracked and captured through high velocity video frames. A Kalman filter technique is implemented in the tracking algorithm to reduce noise and increase the tracking accuracy of the oscillating motion. The forced motion experiment, the last test, is performed to determine the deformation characteristics of the object. A high power spotlight (500-2000W) is used to illuminate the MLI and the displacements are measured by means of a high resolution laser sensor. Finite Element Analysis (FEA) and multibody dynamics of the experimental setups are used for the validation of the flexible model by comparing with the experimental results of displacements and natural frequencies.
Resumo:
Fault tolerance allows a system to remain operational to some degree when some of its components fail. One of the most common fault tolerance mechanisms consists on logging the system state periodically, and recovering the system to a consistent state in the event of a failure. This paper describes a general fault tolerance logging-based mechanism, which can be layered over deterministic systems. Our proposal describes how a logging mechanism can recover the underlying system to a consistent state, even if an action or set of actions were interrupted mid-way, due to a server crash. We also propose different methods of storing the logging information, and describe how to deploy a fault tolerant master-slave cluster for information replication. We adapt our model to a previously proposed framework, which provided common relational features, like transactions with atomic, consistent, isolated and durable properties, to NoSQL database management systems.
Resumo:
This research explores the business model (BM) evolution process of entrepreneurial companies and investigates the relationship between BM evolution and firm performance. Recently, it has been increasingly recognised that the innovative design (and re-design) of BMs is crucial to the performance of entrepreneurial firms, as BM can be associated with superior value creation and competitive advantage. However, there has been limited theoretical and empirical evidence in relation to the micro-mechanisms behind the BM evolution process and the entrepreneurial outcomes of BM evolution. This research seeks to fill this gap by opening up the ‘black box’ of the BM evolution process, exploring the micro-patterns that facilitate the continuous shaping, changing, and renewing of BMs and examining how BM evolutions create and capture value in a dynamic manner. Drawing together the BM and strategic entrepreneurship literature, this research seeks to understand: (1) how and why companies introduce BM innovations and imitations; (2) how BM innovations and imitations interplay as patterns in the BM evolution process; and (3) how BM evolution patterns affect firm performances. This research adopts a longitudinal multiple case study design that focuses on the emerging phenomenon of BM evolution. Twelve entrepreneurial firms in the Chinese Online Group Buying (OGB) industry were selected for their continuous and intensive developments of BMs and their varying success rates in this highly competitive market. Two rounds of data collection were carried out between 2013 and 2014, which generates 31 interviews with founders/co-founders and in total 5,034 pages of data. Following a three-stage research framework, the data analysis begins by mapping the BM evolution process of the twelve companies and classifying the changes in the BMs into innovations and imitations. The second stage focuses down to the BM level, which addresses the BM evolution as a dynamic process by exploring how BM innovations and imitations unfold and interplay over time. The final stage focuses on the firm level, providing theoretical explanations as to the effects of BM evolution patterns on firm performance. This research provides new insights into the nature of BM evolution by elaborating on the missing link between BM dynamics and firm performance. The findings identify four patterns of BM evolution that have different effects on a firm’s short- and long-term performance. This research contributes to the BM literature by presenting what the BM evolution process actually looks like. Moreover, it takes a step towards the process theory of the interplay between BM innovations and imitations, which addresses the role of companies’ actions, and more importantly, reactions to the competitors. Insights are also given into how entrepreneurial companies achieve and sustain value creation and capture by successfully combining the BM evolution patterns. Finally, the findings on BM evolution contributes to the strategic entrepreneurship literature by increasing the understanding of how companies compete in a more dynamic and complex environment. It reveals that, the achievement of superior firm performance is more than a simple question of whether to innovate or imitate, but rather an integration of innovation and imitation strategies over time. This study concludes with a discussion of the findings and their implications for theory and practice.
Resumo:
The Complex singlet extension of the Standard Model (CxSM) is the simplest extension that provides scenarios for Higgs pair production with different masses. The model has two interesting phases: the dark matter phase, with a Standard Model-like Higgs boson, a new scalar and a dark matter candidate; and the broken phase, with all three neutral scalars mixing. In the latter phase Higgs decays into a pair of two different Higgs bosons are possible. In this study we analyse Higgs-to-Higgs decays in the framework of singlet extensions of the Standard Model (SM), with focus on the CxSM. After demonstrating that scenarios with large rates for such chain decays are possible we perform a comparison between the NMSSM and the CxSM. We find that, based on Higgs-to-Higgs decays, the only possibility to distinguish the two models at the LHC run 2 is through final states with two different scalars. This conclusion builds a strong case for searches for final states with two different scalars at the LHC run 2. Finally, we propose a set of benchmark points for the real and complex singlet extensions to be tested at the LHC run 2. They have been chosen such that the discovery prospects of the involved scalars are maximised and they fulfil the dark matter constraints. Furthermore, for some of the points the theory is stable up to high energy scales. For the computation of the decay widths and branching ratios we developed the Fortran code sHDECAY, which is based on the implementation of the real and complex singlet extensions of the SM in HDECAY.
Resumo:
Background: Recombinant human endostatin (Endostar) has been widely used to suppress angiogenesis in carcinoma patients. Hypertrophic scar (HS) tissue, much like a carcinoma, is often associated with angiogenesis. However, there have been few studies conducted on the effects of Endostar on HS or its mechanism. Objective: This paper investigated the effects Endostar on the HS of rabbit ears and studied the effects of Endostar on VEGF and TIMP-1 expression. Methods: Sixteen New Zealand white rabbits were used to establish HS models. Then, rabbit ears containing HS were randomly assigned to either the Endostar group or the control group. The changes of appearance and histology were evaluated using the naked eye, hematoxylin eosin staining, and a scar elevation index. The VEGF and TIMP-1 expressions were detected by immunohistochemical staining, RT-PCR, and western blot. Results: The thickness of the connective tissue in the Endostar group were thinner, the numbers of micro vessels and fibroblasts were fewer, and the collagen fibers were smoother. Moreover, the mRNA and protein expressions of VEGF and TIMP-1 in the Endostar group were significantly lower than those in the control group. Conclusion: The results suggested that Endostar reduced the formation of HS by down-regulation of VEGF and TIMP-1 expressions.
Resumo:
Cnidarians are often considered simple animals, but the more than 13,000 estimated species (e.g., corals, hydroids and jellyfish) of the early diverging phylum exhibit a broad diversity of forms, functions and behaviors, some of which are demonstrably complex. In particular, cubozoans (box jellyfish) are cnidarians that have evolved a number of distinguishing features. Some cubozoan species possess complex mating behaviors or particularly potent stings, and all possess well-developed light sensation involving image-forming eyes. Like all cnidarians, cubozoans have specialized subcellular structures called nematocysts that are used in prey capture and defense. The objective of this study is to contribute to the development of the box jellyfish Alatina alata as a model cnidarian. This cubozoan species offers numerous advantages for investigating morphological and molecular traits underlying complex processes and coordinated behavior in free-living medusozoans (i.e., jellyfish), and more broadly throughout Metazoa. First, I provide an overview of Cnidaria with an emphasis on the current understanding of genes and proteins implicated in complex biological processes in a few select cnidarians. Second, to further develop resources for A. alata, I provide a formal redescription of this cubozoan and establish a neotype specimen voucher, which serve to stabilize the taxonomy of the species. Third, I generate the first functionally annotated transcriptome of adult and larval A. alata tissue and apply preliminary differential expression analyses to identify candidate genes implicated broadly in biological processes related to prey capture and defense, vision and the phototransduction pathway and sexual reproduction and gametogenesis. Fourth, to better understand venom diversity and mechanisms controlling venom synthesis in A. alata, I use bioinformatics to investigate gene candidates with dual roles in venom and digestion, and review the biology of prey capture and digestion in cubozoans. The morphological and molecular resources presented herein contribute to understanding the evolution of cubozoan characteristics and serve to facilitate further research on this emerging cubozoan model.
Resumo:
International audience
Resumo:
Tese de Doutoramento, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016
Resumo:
AIMS: Cognitive decline in Alzheimer's disease (AD) patients has been linked to synaptic damage and neuronal loss. Hyperphosphorylation of tau protein destabilizes microtubules leading to the accumulation of autophagy/vesicular material and the generation of dystrophic neurites, thus contributing to axonal/synaptic dysfunction. In this study, we analyzed the effect of a microtubule-stabilizing compound in the progression of the disease in the hippocampus of APP751SL/PS1M146L transgenic model. METHODS: APP/PS1 mice (3 month-old) were treated with a weekly intraperitoneal injection of 2 mg/kg epothilone-D (Epo-D) for 3 months. Vehicle-injected animals were used as controls. Mice were tested on the Morris water maze, Y-maze and object-recognition tasks for memory performance. Abeta, AT8, ubiquitin and synaptic markers levels were analyzed by Western-blots. Hippocampal plaque, synaptic and dystrophic loadings were quantified by image analysis after immunohistochemical stainings. RESULTS: Epo-D treated mice exhibited a significant improvement in the memory tests compared to controls. The rescue of cognitive deficits was associated to a significant reduction in the AD-like hippocampal pathology. Levels of Abeta, APP and ubiquitin were significantly reduced in treated animals. This was paralleled by a decrease in the amyloid burden, and more importantly, in the plaque-associated axonal dystrophy pathology. Finally, synaptic levels were significantly restored in treated animals compared to controls. CONCLUSION: Epo-D treatment promotes synaptic and spatial memory recovery, reduces the accumulation of extracellular Abeta and the associated neuritic pathology in the hippocampus of APP/PS1 model. Therefore, microtubule stabilizing drugs could be considered therapeutical candidates to slow down AD progression. Supported by FIS-PI12/01431 and PI15/00796 (AG),FIS-PI12/01439 and PI15/00957(JV)
Resumo:
The Hybrid Monte Carlo algorithm is adapted to the simulation of a system of classical degrees of freedom coupled to non self-interacting lattices fermions. The diagonalization of the Hamiltonian matrix is avoided by introducing a path-integral formulation of the problem, in d + 1 Euclidean space–time. A perfect action formulation allows to work on the continuum Euclidean time, without need for a Trotter–Suzuki extrapolation. To demonstrate the feasibility of the method we study the Double Exchange Model in three dimensions. The complexity of the algorithm grows only as the system volume, allowing to simulate in lattices as large as 163 on a personal computer. We conclude that the second order paramagnetic–ferromagnetic phase transition of Double Exchange Materials close to half-filling belongs to the Universality Class of the three-dimensional classical Heisenberg model.
Resumo:
Similar to what occurs in Human Medicine, also in Veterinary Medicine, the prevalence of oncological diseases has significantly increased. The evolution of Veterinary Medicine, in last decades has brought changes in clinical paradigms, particularly concerning the relationship with the animal and also with the owner. More than any other specialty, members of the Veterinary Medical Team that work in the oncology field, are unavoidably forced to break bad news. This paper proposes the adaptation of the ABCDE model from Human Medicine to Veterinary Medicine. The adaptation of the ABCDE model for Veterinary Medicine improves communication with the owner and offers all the members of the Veterinary Medical Team better communication skills.
Resumo:
Urm1 is a unique dual-function member of the ubiquitin protein family and conserved from yeast to man. It acts both as a protein modifier in ubiquitin-like urmylation and as a sulfur donor for tRNA thiolation, which in concert with the Elongator pathway forms 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modified wobble uridines (U34) in anticodons. Using Saccharomyces cerevisiae as a model to study a relationship between these two functions, we examined whether cultivation temperature and sulfur supply previously implicated in the tRNA thiolation branch of the URM1 pathway also contribute to proper urmylation. Monitoring Urm1 conjugation, we found urmylation of the peroxiredoxin Ahp1 is suppressed either at elevated cultivation temperatures or under sulfur starvation. In line with this, mutants with sulfur transfer defects that are linked to enzymes (Tum1, Uba4) required for Urm1 activation by thiocarboxylation (Urm1-COSH) were found to maintain drastically reduced levels of Ahp1 urmylation and mcm5s2U34 modification. Moreover, as revealed by site specific mutagenesis, the Stransfer rhodanese domain (RHD) in the E1-like activator (Uba4) crucial for Urm1-COSH formation is critical but not essential for protein urmylation and tRNA thiolation. In sum, sulfur supply, transfer and activation chemically link protein urmylation and tRNA thiolation. These are features that distinguish the ubiquitin-like modifier system Uba4•Urm1 from canonical ubiquitin family members and will help elucidate whether, in addition to their mechanistic links, the protein and tRNA modification branches of the URM1 pathway may also relate in function to one another.