987 resultados para Estuarine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This special issue of Estuarine, Coastal and Shelf Science synthesizes and updates the developments in science related to Land Ocean Interactions in the Coastal Zone (LOICZ). Frequent updates about the dynamic coastal zone are useful and necessary as global change accelerates. There is an urgent need to improve the knowledge and understanding of the vulnerability of society and ecosystems to global change hazards in the coastal zone (Vermaat et al., 2005). The collection of papers in this special issue places new developments, findings, techniques and insights within the context of LOICZ science. For the convenience of the reader, the references to papers included in this special issue are printed in italic, whereas other references to LOICZ science are in normal print.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese dout., Ciências do Mar (Ecologia Marinha), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecohydrology is a scientific concept applied to problem- solving in environmental issues. It recognises that the present practice of relying nearly exclusively on engineering fixes to solve environmental problems is failing to restore the aquatic environment to a level that can sustain the quality of life that people are demanding. Ecohydrology is based on the ability of science to quantify and explain the relationships between hy- drological processes and biotic dynamics at a catchment scale and to manipulate these processes to increase the robustness of the aquatic system and thus its ability to cope with human- induced stresses. The concept was developed by the UNESCO International Hydrologic Programme (IHP) and the Man and Biosphere Programme (MAB).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The North Atlantic intertidal community provides a rich set of organismal and environmental material for the study of ecological genetics. Clearly defined environmental gradients exist at multiple spatial scales: there are broad latitudinal trends in temperature, meso-scale changes in salinity along estuaries, and smaller scale gradients in desiccation and temperature spanning the intertidal range. The geology and geography of the American and European coasts provide natural replication of these gradients, allowing for population genetic analyses of parallel adaptation to environmental stress and heterogeneity. Statistical methods have been developed that provide genomic neutrality tests of population differentiation and aid in the process of candidate gene identification. In this paper, we review studies of marine organisms that illustrate associations between an environmental gradient and specific genetic markers. Such highly differentiated markers become candidate genes for adaptation to the environmental factors in question, but the functional significance of genetic variants must be comprehensively evaluated. We present a set of predictions about locus-specific selection across latitudinal, estuarine, and intertidal gradients that are likely to exist in the North Atlantic. We further present new data and analyses that support and contradict these simple selection models. Some taxa show pronounced clinal variation at certain loci against a background of mild clinal variation at many loci. These cases illustrate the procedures necessary for distinguishing selection driven by internal genomic vs. external environmental factors. We suggest that the North Atlantic intertidal community provides a model system for identifying genes that matter in ecology due to the clarity of the environmental stresses and an extensive experimental literature on ecological function. While these organisms are typically poor genetic and genomic models, advances in comparative genomics have provided access to molecular tools that can now be applied to taxa with well-defined ecologies. As many of the organisms we discuss have tight physiological limits driven by climatic factors, this synthesis of molecular population genetics with marine ecology could provide a sensitive means of assessing evolutionary responses to climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Biologia (Biologia Marinha e Aquacultura), Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Biologia (Ecografia), Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Biologia (Ecologia), Universidade de Lisboa, Faculdade de Ciências, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Geologia (Geoquímica), Universidade de Lisboa, Faculdade de Ciências, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Geologia (Geologia Económica e do Ambiente), Universidade de Lisboa, Faculdade de Ciências, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de mestrado em Ecologia Marinha, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445