968 resultados para Environmental application
Resumo:
There is increasing interest in how humans influence spatial patterns in biodiversity. One of the most frequently noted and marked of these patterns is the increase in species richness with area, the species–area relationship (SAR). SARs are used for a number of conservation purposes, including predicting extinction rates, setting conservation targets, and identifying biodiversity hotspots. Such applications can be improved by a detailed understanding of the factors promoting spatial variation in the slope of SARs, which is currently the subject of a vigorous debate. Moreover, very few studies have considered the anthropogenic influences on the slopes of SARs; this is particularly surprising given that in much of the world areas with high human population density are typically those with a high number of species, which generates conservation conflicts. Here we determine correlates of spatial variation in the slopes of species–area relationships, using the British avifauna as a case study. Whilst we focus on human population density, a widely used index of human activities, we also take into account (1) the rate of increase in habitat heterogeneity with increasing area, which is frequently proposed to drive SARs, (2) environmental energy availability, which may influence SARs by affecting species occupancy patterns, and (3) species richness. We consider environmental variables measured at both local (10 km × 10 km) and regional (290 km × 290 km) spatial grains, but find that the former consistently provides a better fit to the data. In our case study, the effect of species richness on the slope SARs appears to be scale dependent, being negative at local scales but positive at regional scales. In univariate tests, the slope of the SAR correlates negatively with human population density and environmental energy availability, and positively with the rate of increase in habitat heterogeneity. We conducted two sets of multiple regression analyses, with and without species richness as a predictor. When species richness is included it exerts a dominant effect, but when it is excluded temperature has the dominant effect on the slope of the SAR, and the effects of other predictors are marginal.
Resumo:
The accurate prediction of storms is vital to the oil and gas sector for the management of their operations. An overview of research exploring the prediction of storms by ensemble prediction systems is presented and its application to the oil and gas sector is discussed. The analysis method used requires larger amounts of data storage and computer processing time than other more conventional analysis methods. To overcome these difficulties eScience techniques have been utilised. These techniques potentially have applications to the oil and gas sector to help incorporate environmental data into their information systems
Resumo:
Bioturbation at all scales, which tends to replace the primary fabric of a sediment by the ichnofabric (the overall fabric of a sediment that has been bioturbated), is now recognised as playing a major role in facies interpretation. The manner in which the substrate may be colonized, and the physical, chemical and ecological controls (grainsize, sedimentation rate, oxygenation, nutrition, salinity, ethology, community structure and succession), together with the several ways in which the substrate is tiered by bioturbators, are the factors and processes that determine the nature of the ichnofabric. Eleven main styles of substrate tiering are described, ranging from single, pioneer colonization to complex tiering under equilibria, their modification under environmental deterioration and amelioration, and diagenetic enhancement or obscuration. Ichnofabrics may be assessed by four attributes: primary sedimentary factors, Bioturbation Index (BI), burrow size and frequency, and ichnological diversity. Construction of tier and ichnofabric constituent diagrams aid visualization and comparison. The breaks or changes in colonization and style of tiering at key stratal surfaces accentuate the surfaces, and many reflect a major environmental shift of the trace-forming biota. due to change in hydrodynamic regime (leading to non-deposition and/or erosion and/or lithification), change in salinity regime, or subaerial exposure. The succession of gradational or abrupt changes in ichnofabric through genetically related successions, together with changes in colonization and tiering across event beds, may also be interpreted in terms of changes in environmental parameters. It is not the ichnotaxa per se that are important in discriminating between ichnofabrics, but rather the environmental conditions that determine the overall style of colonization. Fabrics composed of different ichnotaxa (and different taphonomies) but similar tier structure and ichnoguild may form in similar environments of different age or different latitude. Appreciation of colonization and tiering styles places ancient ichnofabrics on a sound processrelated basis for environmental interpretation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The development of high throughput techniques ('chip' technology) for measurement of gene expression and gene polymorphisms (genomics), and techniques for measuring global protein expression (proteomics) and metabolite profile (metabolomics) are revolutionising life science research, including research in human nutrition. In particular, the ability to undertake large-scale genotyping and to identify gene polymorphisms that determine risk of chronic disease (candidate genes) could enable definition of an individual's risk at an early age. However, the search for candidate genes has proven to be more complex, and their identification more elusive, than previously thought. This is largely due to the fact that much of the variability in risk results from interactions between the genome and environmental exposures. Whilst the former is now very well defined via the Human Genome Project, the latter (e.g. diet, toxins, physical activity) are poorly characterised, resulting in inability to account for their confounding effects in most large-scale candidate gene studies. The polygenic nature of most chronic diseases offers further complexity, requiring very large studies to disentangle relatively weak impacts of large numbers of potential 'risk' genes. The efficacy of diet as a preventative strategy could also be considerably increased by better information concerning gene polymorphisms that determine variability in responsiveness to specific diet and nutrient changes. Much of the limited available data are based on retrospective genotyping using stored samples from previously conducted intervention trials. Prospective studies are now needed to provide data that can be used as the basis for provision of individualised dietary advice and development of food products that optimise disease prevention. Application of the new technologies in nutrition research offers considerable potential for development of new knowledge and could greatly advance the role of diet as a preventative disease strategy in the 21st century. Given the potential economic and social benefits offered, funding for research in this area needs greater recognition, and a stronger strategic focus, than is presently the case. Application of genomics in human health offers considerable ethical and societal as well as scientific challenges. Economic determinants of health care provision are more likely to resolve such issues than scientific developments or altruistic concerns for human health.
Resumo:
The paper provides one of the first applications of the double bootstrap procedure (Simar and Wilson 2007) in a two-stage estimation of the effect of environmental variables on non-parametric estimates of technical efficiency. This procedure enables consistent inference within models explaining efficiency scores, while simultaneously producing standard errors and confidence intervals for these efficiency scores. The application is to 88 livestock and 256 crop farms in the Czech Republic, split into individual and corporate.
Resumo:
The paper provides one of the first applications of the double bootstrap procedure (Simar and Wilson 2007) in a two-stage estimation of the effect of environmental variables on non-parametric estimates of technical efficiency. This procedure enables consistent inference within models explaining efficiency scores, while simultaneously producing standard errors and confidence intervals for these efficiency scores. The application is to 88 livestock and 256 crop farms in the Czech Republic, split into individual and corporate.
Resumo:
Large scientific applications are usually developed, tested and used by a group of geographically dispersed scientists. The problems associated with the remote development and data sharing could be tackled by using collaborative working environments. There are various tools and software to create collaborative working environments. Some software frameworks, currently available, use these tools and software to enable remote job submission and file transfer on top of existing grid infrastructures. However, for many large scientific applications, further efforts need to be put to prepare a framework which offers application-centric facilities. Unified Air Pollution Model (UNI-DEM), developed by Danish Environmental Research Institute, is an example of a large scientific application which is in a continuous development and experimenting process by different institutes in Europe. This paper intends to design a collaborative distributed computing environment for UNI-DEM in particular but the framework proposed may also fit to many large scientific applications as well.