960 resultados para Envelope theorem
Resumo:
In this article, a minimum weight design of carbon/epoxy laminates is carried out using genetic algorithms. New failure envelopes have been developed by the combination of two commonly used phenomenological failure criteria, namely Maximum Stress (MS) and Tsai-Wu (TW) are used to obtain the minimum weight of the laminate. These failure envelopes are the most conservative failure envelope (MCFE) and the least conservative failure envelope (LCFE). Uniaxial and biaxial loading conditions are considered for the study and the differences in the optimal weight of the laminate are compared for the MCFE and LCFE. The MCFE can be used for design of critical load-carrying composites, while the LCFE could be used for the design of composite structures where weight reduction is much more important than safety such as unmanned air vehicles.
Resumo:
The cell envelope of Mycobacterium tuberculosis (M. tuberculosis) is composed of a variety of lipids including mycolic acids, sulpholipids, lipoarabinomannans, etc., which impart rigidity crucial for its survival and pathogenesis. Acyl CoA carboxylase (ACC) provides malonyl-CoA and methylmalonyl-CoA, committed precursors for fatty acid and essential for mycolic acid synthesis respectively. Biotin Protein Ligase (BPL/BirA) activates apo-biotin carboxyl carrier protein (BCCP) by biotinylating it to an active holo-BCCP. A minimal peptide (Schatz), an efficient substrate for Escherichia coli BirA, failed to serve as substrate for M. tuberculosis Biotin Protein Ligase (MtBPL). MtBPL specifically biotinylates homologous BCCP domain, MtBCCP87, but not EcBCCP87. This is a unique feature of MtBPL as EcBirA lacks such a stringent substrate specificity. This feature is also reflected in the lack of self/promiscuous biotinylation by MtBPL. The N-terminus/HTH domain of EcBirA has the selfbiotinable lysine residue that is inhibited in the presence of Schatz peptide, a peptide designed to act as a universal acceptor for EcBirA. This suggests that when biotin is limiting, EcBirA preferentially catalyzes, biotinylation of BCCP over selfbiotinylation. R118G mutant of EcBirA showed enhanced self and promiscuous biotinylation but its homologue, R69A MtBPL did not exhibit these properties. The catalytic domain of MtBPL was characterized further by limited proteolysis. Holo-MtBPL is protected from proteolysis by biotinyl-59 AMP, an intermediate of MtBPL catalyzed reaction. In contrast, apo-MtBPL is completely digested by trypsin within 20 min of co-incubation. Substrate selectivity and inability to promote self biotinylation are exquisite features of MtBPL and are a consequence of the unique molecular mechanism of an enzyme adapted for the high turnover of fatty acid biosynthesis.
Resumo:
We review work initiated and inspired by Sudarshan in relativistic dynamics, beam optics, partial coherence theory, Wigner distribution methods, multimode quantum optical squeezing, and geometric phases. The 1963 No Interaction Theorem using Dirac's instant form and particle World Line Conditions is recalled. Later attempts to overcome this result exploiting constrained Hamiltonian theory, reformulation of the World Line Conditions and extending Dirac's formalism, are reviewed. Dirac's front form leads to a formulation of Fourier Optics for the Maxwell field, determining the actions of First Order Systems (corresponding to matrices of Sp(2,R) and Sp(4,R)) on polarization in a consistent manner. These groups also help characterize properties and propagation of partially coherent Gaussian Schell Model beams, leading to invariant quality parameters and the new Twist phase. The higher dimensional groups Sp(2n,R) appear in the theory of Wigner distributions and in quantum optics. Elegant criteria for a Gaussian phase space function to be a Wigner distribution, expressions for multimode uncertainty principles and squeezing are described. In geometric phase theory we highlight the use of invariance properties that lead to a kinematical formulation and the important role of Bargmann invariants. Special features of these phases arising from unitary Lie group representations, and a new formulation based on the idea of Null Phase Curves, are presented.
Resumo:
The crystal structure of a daturalactone derivative has been determined by X-ray structural analysis. The compound crystallizes in orthorhomic space group P2(1)2(1)2(1) with cell parameters a = 15.141(1) angstrom, b = 18.425(1) angstrom, c = 19.251(2) angstrom. The structure was solved by direct methods and refined to R = 0.082. The asymmetric unit contains two non-equivalent molecules. Extensive hydrogen bonding is present. The conformations of the rings are A: a distorted half-chair, B: a perfect half-chair, C: a chair, D: an envelope-half chair and E: a twist boat. Ring junctions A/B, B/C, C/D are all trans fused. Methyl carbons C(18), C(19), C(27) and the lactone moiety is beta-oriented whereas the methyl carbons C(21) and C(28) are alpha-oriented.
Resumo:
Nuclear import of proteins is mediated by the nuclear pore complexes in the nuclear envelope and requires the presence of a nuclear localization signal (NLS) on the karyophilic protein. In this paper, we describe studies with a monoclonal antibody, Mab E2, which recognizes a class of nuclear pore proteins of 60-76 kDa with a common phosphorylated epitope on rat nuclear envelopes. The Mab Ea-reactive proteins fractionated with the relatively insoluble pore complex-containing component of the envelope and gave a finely punctate pattern of nuclear staining in immunofluorescence assays. The antibody did not bind to any cytosolic proteins. Mab E2 inhibited the interaction of a simian virus 40 large T antigen NLS peptide with a specific 60-kDa NLS-binding protein from rat nuclear envelopes in photoaffinity labeling experiments. The antibody blocked the nuclear import of NLS-albumin conjugates in an in vitro nuclear transport assay with digitonin-permeabilized cells, but did not affect passive diffusion of a small nonnuclear protein, lysozyme, across the pore. Mab E2 may inhibit protein transport by directly interacting with the 60-kDa NLS-binding protein, thereby blocking signal-mediated nuclear import across the nuclear pore complex. (C) 1994 Academic Press, Inc.
Resumo:
We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flow is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.
Resumo:
In this paper, we study the Foschini Miljanic algorithm, which was originally proposed in a static channel environment. We investigate the algorithm in a random channel environment, study its convergence properties and apply the Gerschgorin theorem to derive sufficient conditions for the convergence of the algorithm. We apply the Foschini and Miljanic algorithm to cellular networks and derive sufficient conditions for the convergence of the algorithm in distribution and validate the results with simulations. In cellular networks, the conditions which ensure convergence in distribution can be easily verified.
Resumo:
Tutte (1979) proved that the disconnected spanning subgraphs of a graph can be reconstructed from its vertex deck. This result is used to prove that if we can reconstruct a set of connected graphs from the shuffled edge deck (SED) then the vertex reconstruction conjecture is true. It is proved that a set of connected graphs can be reconstructed from the SED when all the graphs in the set are claw-free or all are P-4-free. Such a problem is also solved for a large subclass of the class of chordal graphs. This subclass contains maximal outerplanar graphs. Finally, two new conjectures, which imply the edge reconstruction conjecture, are presented. Conjecture 1 demands a construction of a stronger k-edge hypomorphism (to be defined later) from the edge hypomorphism. It is well known that the Nash-Williams' theorem applies to a variety of structures. To prove Conjecture 2, we need to incorporate more graph theoretic information in the Nash-Williams' theorem.
Resumo:
In this paper, an improved probabilistic linearization approach is developed to study the response of nonlinear single degree of freedom (SDOF) systems under narrow-band inputs. An integral equation for the probability density function (PDF) of the envelope is derived. This equation is solved using an iterative scheme. The technique is applied to study the hardening type Duffing's oscillator under narrow-band excitation. The results compare favorably with those obtained using numerical simulation. In particular, the bimodal nature of the PDF for the response envelope for certain parameter ranges is brought out.
Resumo:
The variation of the viscosity as a function of the sequence distribution in an A-B random copolymer melt is determined. The parameters that characterize the random copolymer are the fraction of A monomers f, the parameter lambda which determines the correlation in the monomer identities along a chain and the Flory chi parameter chi(F) which determines the strength of the enthalpic repulsion between monomers of type A and B. For lambda>0, there is a greater probability of finding like monomers at adjacent positions along the chain, and for lambda<0 unlike monomers are more likely to be adjacent to each other. The traditional Markov model for the random copolymer melt is altered to remove ultraviolet divergences in the equations for the renormalized viscosity, and the phase diagram for the modified model has a binary fluid type transition for lambda>0 and does not exhibit a phase transition for lambda<0. A mode coupling analysis is used to determine the renormalization of the viscosity due to the dependence of the bare viscosity on the local concentration field. Due to the dissipative nature of the coupling. there are nonlinearities both in the transport equation and in the noise correlation. The concentration dependence of the transport coefficient presents additional difficulties in the formulation due to the Ito-Stratonovich dilemma, and there is some ambiguity about the choice of the concentration to be used while calculating the noise correlation. In the Appendix, it is shown using a diagrammatic perturbation analysis that the Ito prescription for the calculation of the transport coefficient, when coupled with a causal discretization scheme, provides a consistent formulation that satisfies stationarity and the fluctuation dissipation theorem. This functional integral formalism is used in the present analysis, and consistency is verified for the present problem as well. The upper critical dimension for this type of renormaliaation is 2, and so there is no divergence in the viscosity in the vicinity of a critical point. The results indicate that there is a systematic dependence of the viscosity on lambda and chi(F). The fluctuations tend to increase the viscosity for lambda<0, and decrease the viscosity for lambda>0, and an increase in chi(F) tends to decrease the viscosity. (C) 1996 American Institute of Physics.
Resumo:
This paper presents a fast algorithm for data exchange in a network of processors organized as a reconfigurable tree structure. For a given data exchange table, the algorithm generates a sequence of tree configurations in which the data exchanges are to be executed. A significant feature of the algorithm is that each exchange is executed in a tree configuration in which the source and destination nodes are adjacent to each other. It has been proved in a theorem that for every pair of nodes in the reconfigurable tree structure, there always exists two and only two configurations in which these two nodes are adjacent to each other. The algorithm utilizes this fact and determines the solution so as to optimize both the number of configurations required and the time to perform the data exchanges. Analysis of the algorithm shows that it has linear time complexity, and provides a large reduction in run-time as compared to a previously proposed algorithm. This is well-confirmed from the experimental results obtained by executing a large number of randomly-generated data exchange tables. Another significant feature of the algorithm is that the bit-size of the routing information code is always two bits, irrespective of the number of nodes in the tree. This not only increases the speed of the algorithm but also results in simpler hardware inside each node.
Resumo:
We present a complete solution to the problem of coherent-mode decomposition of the most general anisotropic Gaussian Schell-model (AGSM) beams, which constitute a ten-parameter family. Our approach is based on symmetry considerations. Concepts and techniques familiar from the context of quantum mechanics in the two-dimensional plane are used to exploit the Sp(4, R) dynamical symmetry underlying the AGSM problem. We take advantage of the fact that the symplectic group of first-order optical system acts unitarily through the metaplectic operators on the Hilbert space of wave amplitudes over the transverse plane, and, using the Iwasawa decomposition for the metaplectic operator and the classic theorem of Williamson on the normal forms of positive definite symmetric matrices under linear canonical transformations, we demonstrate the unitary equivalence of the AGSM problem to a separable problem earlier studied by Li and Wolf [Opt. Lett. 7, 256 (1982)] and Gori and Guattari [Opt. Commun. 48, 7 (1983)]. This conn ction enables one to write down, almost by inspection, the coherent-mode decomposition of the general AGSM beam. A universal feature of the eigenvalue spectrum of the AGSM family is noted.
Resumo:
Nuclear lamina in an eukaryotic cell is primarily composed of the lamins A, B and C. The A type lamins are found only in differentiated cell types while the B type lamins are present both in differentiated and undifferentiated cells. Lamin B interacts with the inner nuclear membrane, In recent years there have been extensive studies on the relationship between the dynamic state of lamin B and the nuclear envelope integrity with respect to the fate of a particular cell, In this article, we have analysed the recent developments and have considered the sequence of events that might be contributing to the fate of a cell either to undergo normal cell division or uncontrolled cellular proliferation or apoptosis.
Resumo:
It is shown that the fluctuation-dissipation theorem is satisfied by the solutions of a general set of nonlinear Langevin equations with a quadratic free-energy functional (constant susceptibility) and field-dependent kinetic coefficients, provided the kinetic coefficients satisfy the Onsager reciprocal relations for the irreversible terms and the antisymmetry relations for the reversible terms. The analysis employs a perturbation expansion of the nonlinear terms, and a functional integral calculation of the correlation and response functions, and it is shown that the fluctuation-dissipation relation is satisfied at each order in the expansion.
Resumo:
We use a path-integral approach to calculate the distribution P(w, t) of the fluctuations in the work W at time t of a polymer molecule (modeled as an elastic dumbbell in a viscous solvent) that is acted on by an elongational flow field having a flow rate (gamma) over dot. We find that P(w, t) is non-Gaussian and that, at long times, the ratio P(w, t)/ P (-w, t) is equal to expw/(k(B)T)], independent of (gamma) over dot. On the basis of this finding, we suggest that polymers in elongational flows satisfy a fluctuation theorem.