916 resultados para Energy dispersive X ray spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical X-ray opacities are used in numerous radiative transfer simulations of plasmas at different temperatures and densities, for example astrophysics, fusion, metrology and EUV and X-rays radiation sources. However, there are only a reduced number of laboratories working on the validation of those theoretical results empirically, in particular for high temperature plasmas (mayor que 1eV). One of those limitations comes from the use of broad band EUV- X ray sources to illuminate the plasma which, among other issues, present low reproducibility and repetition rate [1]. Synchrotron radiation facilities are a more appropriate radiation source in that sense, since they provide tunable, reproducible and high resolution photons. Only their ?low? photon intensity for these experiments has prevented researchers to use it for this purpose. However, as new synchrotron facilities improve their photon fluxes, this limitation not longer holds [2]. This work evaluates the experimental requirements to use third generation synchrotron radiation sources for the empirical measurement of opacities of plasmas, proposing a pausible experimental set-up to carry them out. Properties of the laser or discharge generated plasmas to be studied with synchrotron radiation will be discussed in terms of their maximum temperatures, densities and temporal evolution. It will be concluded that there are encouraging reasons to pursue these kind of experiments which will provide with an appropriate benchmark for theoretical opacities

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to ≈1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2–4. The baryonic fractions vary by a factor of ≈3 from cluster to cluster and almost always exceed 0.09 h50−[3/2] and thus are in fundamental conflict with the assumption of Ω = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2–0.45 solar, and the abundances of O and Si for low redshift systems are 0.6–1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z ≈ 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1–0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50−2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray photoelectron spectroscopy (XPS) can play an important role in guiding the design of new materials, tailored to meet increasingly stringent constraints on performance devices, by providing insight into their surface compositions and the fundamental interactions between the surfaces and the environment. This chapter outlines the principles and application of XPS as a versatile, chemically specific analytical tool in determining the electronic structures and (usually surface) compositions of constituent elements within diverse functional materials. Advances in detector electronics have opened the way for development of photoelectron microscopes and instruments with XPS imaging capabilities. Advances in surface science instrumentation to enable time-resolved spectroscopic measurements offer exciting opportunities to quantitatively investigate the composition, structure and dynamics of working catalyst surfaces. Attempts to study the effects of material processing in realistic environments currently involves the use of high- or ambient-pressure XPS in which samples can be exposed to reactive environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mercury scrubbing from gas streams using a supported 1-butyl-3-methylimidazolium chlorocuprate(II) ionic liquid ([C4mim]2[Cu2Cl6]) has been studied using operando EXAFS. Initial oxidative capture as [HgCl3]– anions was confirmed, this was then followed by the unanticipated generation of mercury(I) chloride through comproportionation with additional mercury from the gas stream. Combining these two mechanisms leads to net one electron oxidative extraction of mercury from the gas with increased potential capacity and efficiency for supported ionic liquid mercury scrubbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08