891 resultados para Endemic
Resumo:
Whole-life thinking for engineers working on the built environment has become more important in a fast changing world.Engineers are increasingly concerned with complex systems, in which the parts interact with each other and with the outside world in many ways – the relationships between the parts determine how the system behaves. Systems thinking provides one approach to developing a more robust whole life approach. Systems thinking is a process of understanding how things influence one another within a wider perspective. Complexity, chaos, and risk are endemic in all major projects. New approaches are needed to produce more reliable whole life predictions. Best value, rather than lowest cost can be achieved by using whole-life appraisal as part of the design and delivery strategy.
Resumo:
Aim Test hypotheses that present biodiversity and endemic species richness are related to climatic stability and/or biome persistence.Location Africa south of 15° S. Methods Seventy eight HadCM3 general circulation model palaeoclimate experiments spanning the last 140,000 years, plus a pre-industrial experiment,were used to calculate measures of climatic variability for 0.5° grid cells. Models were fitted relating distributions of the nine biomes of South Africa,Lesotho and Swaziland to present climate. These models were used to simulate potential past biome distribution and extent for the 78 palaeoclimate experiments, and three measures of biome persistence. Climatic response surfaces were fitted for 690 bird species regularly breeding in the region and used to simulate present species richness for cells of the 0.5° grid. Species richness was evaluated for residents, mobile species (nomadic or partially/altitudinally migrant within the region), and intra-African migrants, and also separately for endemic/near-endemic (hereafter ‘endemic’) species as a whole and those associated with each biome. Our hypotheses were tested by analysing correlations between species richness and climatic variability or biome persistence. Results The magnitude of climatic variability showed clear spatial patterns. Marked changes in biome distributions and extents were projected, although limited areas of persistence were projected for some biomes. Overall species richness was not correlated with climatic variability, although richness of mobile species showed a weak negative correlation. Endemic species richness was significantly negatively correlated with climatic variability. Strongest correlations, however, were positive correlations between biome persistence and richness of endemics associated with individual biomes. Main conclusions Low climatic variability, and especially a degree of stability enabling biome persistence, is strongly correlated with species richness of birds endemic to southern Africa. This probably principally reflects reduced extinction risk for these species where the biome to which they are adapted persisted
Resumo:
Global climate changes during the Cenozoic (65.5–0 Ma) caused major biological range shifts and extinctions. In northern Europe, for example, a pattern of few endemics and the dominance of wide-ranging species is thought to have been determined by the Pleistocene (2.59–0.01 Ma) glaciations. This study, in contrast, reveals an ancient subsurface fauna endemic to Britain and Ireland. Using a Bayesian phylogenetic approach, we found that two species of stygobitic invertebrates (genus Niphargus) have not only survived the entire Pleistocene in refugia but have persisted for at least 19.5 million years. Other Niphargus species form distinct cryptic taxa that diverged from their nearest continental relative between 5.6 and 1.0 Ma. The study also reveals an unusual biogeographical pattern in the Niphargus genus. It originated in north-west Europe approximately 87 Ma and underwent a gradual range expansion. Phylogenetic diversity and species age are highest in north-west Europe, suggesting resilience to extreme climate change and strongly contrasting the patterns seen in surface fauna. However, species diversity is highest in south-east Europe, indicating that once the genus spread to these areas (approximately 25 Ma), geomorphological and climatic conditions enabled much higher diversification. Our study highlights that groundwater ecosystems provide an important contribution to biodiversity and offers insight into the interactions between biological and climatic processes.
Resumo:
A mathematical model for Banana Xanthomonas Wilt (BXW) spread by insect is presented. The model incorporates inflorescence infection and vertical transmission from the mother corm to attached suckers, but not tool-based transmission by humans. Expressions for the basic reproduction number R0 are obtained and it is verified that disease persists, at a unique endemic level, when R0 > 1. From sensitivity analysis, inflorescence infection rate and roguing rate were the parameters with most influence on disease persistence and equilibrium level. Vertical transmission parameters had less effect on persistence threshold values. Parameters were approximately estimated from field data. The model indicates that single stem removal is a feasible approach to eradication if spread is mainly via inflorescence infection. This requires continuous surveillance and debudding such that a 50% reduction in inflorescence infection and 2–3 weeks interval of surveillance would eventually lead to full recovery of banana plantations and hence improved production.
Resumo:
Background: American cutaneous leishmaniasis (ACL) is a re-emerging disease in the state of Sao Paulo, Brazil. It is important to understand both the vector and disease distribution to help design control strategies. As an initial step in applying geographic information systems (GIS) and remote sensing (RS) tools to map disease-risk, the objectives of the present work were to: (i) produce a single database of species distributions of the sand fly vectors in the state of Sao Paulo, (ii) create combined distributional maps of both the incidence of ACL and its sand fly vectors, and (iii) thereby provide individual municipalities with a source of reference material for work carried out in their area. Results: A database containing 910 individual records of sand fly occurrence in the state of Sao Paulo, from 37 different sources, was compiled. These records date from between 1943 to 2009, and describe the presence of at least one of the six incriminated or suspected sand fly vector species in 183/645 (28.4%) municipalities. For the remaining 462 (71.6%) municipalities, we were unable to locate records of any of the six incriminated or suspected sand fly vector species (Nyssomyia intermedia, N. neivai, N. whitmani, Pintomyia fischeri, P. pessoai and Migonemyia migonei). The distribution of each of the six incriminated or suspected vector species of ACL in the state of Sao Paulo were individually mapped and overlaid on the incidence of ACL for the period 1993 to 1995 and 1998 to 2007. Overall, the maps reveal that the six sand fly vector species analyzed have unique and heterogeneous, although often overlapping, distributions. Several sand fly species - Nyssomyia intermedia and N. neivai - are highly localized, while the other sand fly species - N. whitmani, M. migonei, P. fischeri and P. pessoai - are much more broadly distributed. ACL has been reported in 160/183 (87.4%) of the municipalities with records for at least one of the six incriminated or suspected sand fly vector species, while there are no records of any of these sand fly species in 318/478 (66.5%) municipalities with ACL. Conclusions: The maps produced in this work provide basic data on the distribution of the six incriminated or suspected sand fly vectors of ACL in the state of Sao Paulo, and highlight the complex and geographically heterogeneous pattern of ACL transmission in the region. Further studies are required to clarify the role of each of the six suspected sand fly vector species in different regions of the state of Sao Paulo, especially in the majority of municipalities where ACL is present but sand fly vectors have not yet been identified.
Resumo:
The occurrence of the insect vector (sand flies) with low rates of Leishmania infection, as well as autochthonous transmission in the absence of the natural vector in dogs, have been reported. These unexpected data suggest a hypothesis of other arthropods as a possible way of Leishmania transmission. The prevalence of Leishmania (Leishmania) infantum in fleas and ticks collected from dogs with canine visceral leishmaniasis (CVL), as well as parasite viability, were evaluated herein. The presence of L. (L.) infantum was assayed by PCR and ELISA in ectoparasites and biological samples from 73 dogs living in a Brazilian endemic area. As the occurrence of Leishmania DNA in ticks and fleas is expected given their blood-feeding habits, we next investigated whether parasites can remain viable inside ticks. PCR and ELISA confirmed that 83% of the dogs had CVL. Fleas and ticks (nymphs, male and female adults) were collected in 55% and 63% of the 73 dogs, respectively. Out of the 60 dogs with CVL, 80% harbored ectoparasites infected with L. (L.) infantum. The infection rates of the ectoparasites were 23% and 50% for fleas and ticks, respectively. The RNA analysis of the extract from ticks left in laboratory conditions during 7 to 10 days after removal from CVL dogs showed that parasites were alive. In addition, live parasites were also detected inside adult ticks recently molted in laboratory conditions. These findings indicate a higher infection rate of L. (L.) infantum in ticks and fleas, but they do not conclusively demonstrate whether these ticks can act as vectors of CVL, despite the fact that their rates were higher than those previously described in Lutzomyia longipalpis. The presence of viable L. (L.) infantum in ticks suggests the possible importance of dog ectoparasites in CVL dissemination.
Resumo:
Triatoma arthurneivai Lent & Martins and Triatoma wygodzinskyi Lent (Hemiptera: Reduviidae) are two Brazilian species found in the sylvatic environment. Several authors may have misidentified T. arthurneivai and consequently published erroneous information. This work reports the use of geometric morphometric analysis on wings in order to differentiate T. arthurneivai and T. wygodzinskyi, and thus to detect possible misidentifications. Triatomines collected from the field in the states of Minas Gerais and Sao Paulo, and from laboratory colonies, were used. Analyses show a clear differentiation between specimens of T. arthurneivai and T. wygodzinskyi. This indicates that T. arthurneivai populations from Sao Paulo state were misidentified and should be considered as T. wygodzinskyi. This study also suggests that T. arthurneivai is an endemic species from Serra do Cipo, Minas Gerais state.
Resumo:
Paepalanthus subgenus Xeractis (Eriocaulaceae) comprises 28 recognized species endemic to the Espinhaco Range, in Minas Gerais state, Brazil. Most species of the subgenus are restricted to small localities and critically endangered, but still in need of systematic study. The monophyly of the subgenus has already been tested, but only with a few species. Our study presents the first phylogenetic hypothesis within the group, based on morphology. A maximum parsimony analysis was conducted on a matrix of 30 characters for 30 terminal taxa, including all species of the subgenus and two outgroups. The biogeographical hypotheses for the subgenus were inferred based on dispersal-vicariance analysis (DIVA). The analysis provided one most-parsimonious hypothesis that supports most of the latest published subdivisions (sections and series). However, some conflicts remain concerning the position of a few species and the relationships between sections. The distribution and origin(s) of microendemism are also discussed, providing the ground for conservation strategies to be developed in the region. (C) 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 167, 137-152.
Resumo:
Filamentous fungi and yeasts associated with the marine algae Adenocystis utricularis, Desmarestia anceps, and Palmaria decipiens from Antarctica were studied. A total of 75 fungal isolates, represented by 27 filamentous fungi and 48 yeasts, were isolated from the three algal species and identified by morphological, physiological, and sequence analyses of the internal transcribed spacer region and D1/D2 variable domains of the large-subunit rRNA gene. The filamentous fungi and yeasts obtained were identified as belonging to the genera Geomyces, Antarctomyces, Oidiodendron, Penicillium, Phaeosphaeria, Aureobasidium, Cryptococcus, Leucosporidium, Metschnikowia, and Rhodotorula. The prevalent species were the filamentous fungus Geomyces pannorum and the yeast Metschnikowia australis. Two fungal species isolated in our study, Antarctomyces psychrotrophicus and M. australis, are endemic to Antarctica. This work is the first study of fungi associated with Antarctic marine macroalgae, and contributes to the taxonomy and ecology of the marine fungi living in polar environments. These fungal species may have an important role in the ecosystem and in organic matter recycling.
Resumo:
We describe and illustrate the new species Actinocephalus verae (Eriocaulaceae: Paepalanthoideae). This species is endemic to the rocky outcrops of the Espinhacao range in Minas Gerais, Brazil. We make comparisons with Actinocephalus ithyphyllus and Actinocephalus ochrocephalus, the morphologically most similar species. The new species` morphological variation, habitat, geographic distribution, and conservation status are discussed.
Resumo:
This Study evaluated the species-level taxonomy and phylogenetic relationship among Kumanoa species from Brazil with other regions of the world based on the plastid-encoded RUBISCO large Subunit gene (rhcL). Partial rbcL sequences were obtained for 11 Kulnanoa specimens. Eight species are recognised from Brazil on the basis of molecular and morphological data: seven previously described (K abilii, K ambignia, K. breviarticulata, K. cipoensis, K. equisetoidea, K. globospora and K procarpa) and a new species here proposed (K. amazonensis sp. nov. Necchi & Vis). The new species has reduced and dense whorls but differs from the two closest related species in lacking secondary fascicles. Previously proposed infrageneric categories were not supported by the molecular data. Species described and endemic (K. breviarticulata, K. cipoensis, K equiseloidea and K. procarpa) to Brazil are not grouped together but are variously related to other species from North America, Europe and Australasia. With the species recognised in this study using molecular and morphological data and those previously distinguished by morphology, 13 species of Kumanoa are Currently documented from Brazil.
Resumo:
Alcantarea (Bromeliaceae) has 26 species that are endemic to eastern Brazil, occurring mainly on gneiss-granitic rock outcrops (`inselbergs`). Alcantarea has great ornamental potential and several species are cultivated in gardens. Limited data is available in the literature regarding the leaf anatomical features of the genus, though it has been shown that it may provide valuable information for characterizing of Bromeliaceae taxa. In the present work, we employed leaf anatomy to better characterize the genus and understand its radiation into harsh environments, such as inselbergs. We also searched for characteristics potentially useful in phylogenetic analyses and in delimiting Alcantarea and Vriesea. The anatomical features of the leaves, observed for various Alcantarea species, are in accordance with the general pattern shown by other Bromeliaceae members. However, some features are notable for their importance for sustaining life on rock outcrops, such as: small epidermal thick-walled cells, uneven sinuous epidermal walls, hypodermis often differentiated into lignified layers with thick-walled cells, aquiferous hypodermis bearing collapsible cells, and the presence of well developed epicuticular stratum. Alcantarea leaves tend to show different shapes in the spongy parenchyma, and have chlorenchymatous palisade parenchyma arranged in more well-defined arches, when compared to Vriesea species from the same habitat.
Resumo:
Five new species of Paepalanthus section Diphyomene are described and illustrated: P. brevis, P. flexuosus, P. longiciliatus, P. macer, and P. stellatus. Paepalanthus brevis, similar to P. decussus, is easily distinguished by its short reproductive axis, and pilose and mucronate leaves. Paepalanthus flexuosus, morphologically related to P. urbanianus, possesses a distinctive short and tortuous reproductive axis. Paepalanthus longiciliatus, morphologically similar to P. weddellianus, possesses long trichomes on the margins of the reproductive axis bracts, considered a diagnostic feature. Paepalanthus macer shares similarities with P. amoenus, differing by its sulfurous capitula and adpressed reproductive axis bracts. Paepalanthus stellatus also has affinity with P. decussus, but possesses unique, membranaceous, reproductive-axis bracts and a punctual inner-capitulum arrangement of pistillate flowers. Four of the described species are narrowly distributed in the state of Goias, whereas P. brevis is endemic to Distrito Federal. All are considered critically endangered. Detailed comparisons of these species are presented in tables. Comments on phenology, distribution, habitat and etymology, along with an identification key, are provided.
Resumo:
Camarea is a South-American endemic genus comprising eight species. In the present work n-alkanes from foliar cuticular waxes of 23 specimens, representing seven species of Camarea were analyzed, aiming at establishing interspecific affinities and evaluating the usefulness of n-alkane distribution as species characteristic. The sampling included also specimens of Peixotoa rericulata and Janusia guaronitica (both Malpighiaceae). The results were used to obtain a phenogram indicating chemical affinities between species. The results are in agreement with morphological similarities among some Camarea species. Intraspecific variability was small, suggesting that n-alkane distribution may be useful for species characterization and establishment of links among Camarea species. The results support the recognition of Camarea triphylla as a synonym of Camarea axillaris and are not coherent with a hybrid condition of a population exhibiting morphological characteristics combining Camarea affinis and Camarea hirsuta, suggesting instead that the individuals analyzed belong either to Camarea hirsuta or a close species. Distribution of n-alkanes is inadequate to distinguish among Malpighiaceae genera: P reticulata has n-alkane distribution similar to several Cumarea species. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The Atlantic rainforest has the second highest biodiversity in Brazil. It has been shrinking rapidly in area as a result of intensive deforestation, and only 7% of the original cover now remains, as isolated patches or in ecological reserves. In order to obtain new information on the distribution of the Atlantic rainforest during the Quaternary, we examined herbarium data to locate relevant populations and extracted DNA from fresh leaves from 26 populations. The present-day distribution of endemic Podocarpus populations shows that they are widely dispersed across eastern Brazil, and that the expansion of Podocarpus recorded in single Amazonian pollen records may have originated from either western or eastern populations. Genetic analysis enabled us to determine the boundaries of their regional expansion: northern and central populations of P. sellowii appeared between 5 degrees and 15 degrees S some 16,000 years ago; populations of P lambertii or sellowii have appeared between 15 degrees and 23 degrees S at different times since the last glaciation at least; and P lambertii appeared between 23 degrees and 30 degrees S during the recent expansion of Araucaria forests. The combination of botanical, pollen, and molecular analyses proved to be a rapid means of inferring distribution boundaries for sparse populations and their regional evolution within tropical ecosystems. Today the rainforest refugia we identified have become hotspots that are crucial to the survival of the Atlantic forest under unfavourable climatic conditions and, as such, offer the only possible opportunity for this type of forest to expand in the event of future climate change.