985 resultados para Electronic circuits
Resumo:
The invention provides a multilayer electronic device having electrodes, formed on a laterally extending first layer, the lateral position of each of at least two adjacent electrodes being defined by a channel in the first layer. Each channel is adjacent a deposition region, the material which forms each electrode substantially covering the deposition region to form a continuous conductive structure.
Resumo:
This paper presents the steps and the challenges for implementing analytical, physics-based models for the insulated gate bipolar transistor (IGBT) and the PIN diode in hardware and more specifically in field programmable gate arrays (FPGAs). The models can be utilised in hardware co-simulation of complex power electronic converters and entire power systems in order to reduce the simulation time without compromising the accuracy of results. Such a co-simulation allows reliable prediction of the system's performance as well as accurate investigation of the power devices' behaviour during operation. Ultimately, this will allow application-specific optimisation of the devices' structure, circuit topologies as well as enhancement of the control and/or protection schemes.
Resumo:
This paper describes a methodology that enables fast and reasonably accurate prediction of the reliability of power electronic modules featuring IGBTs and p-i-n diodes, by taking into account thermo-mechanical failure mechanisms of the devices and their associated packaging. In brief, the proposed simulation framework performs two main tasks which are tightly linked together: (i) the generation of the power devices' transient thermal response for realistic long load cycles and (ii) the prediction of the power modules' lifetime based on the obtained temperature profiles. In doing so the first task employs compact, physics-based device models, power losses lookup tables and polynomials and combined material-failure and thermal modelling, while the second task uses advanced reliability tests for failure mode and time-to-failure estimation. The proposed technique is intended to be utilised as a design/optimisation tool for reliable power electronic converters, since it allows easy and fast investigation of the effects that changes in circuit topology or devices' characteristics and packaging have on the reliability of the employed power electronic modules. © 2012 IEEE.
Resumo:
High-resolution time resolved transmittivity measurements on horizontally aligned free-standing multi-walled carbon nanotubes reveal a different electronic transient behavior from that of graphite. This difference is ascribed to the presence of discrete energy states in the multishell carbon nanotube electronic structure. Probe polarization dependence suggests that the optical transitions involve definite selection rules. The origin of these states is discussed and a rate equation model is proposed to rationalize our findings. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Accurate electronic structures of the technologically important lanthanide/rare-earth sesquioxides (Ln2O3, with Ln=La, ⋯,Lu) and CeO2 have been calculated using hybrid density functionals HSE03, HSE06, and screened exchange (sX-LDA). We find that these density functional methods describe the strongly correlated Ln f electrons as well as the recent G0W0@LDA+U results, generally yielding the correct band gaps and trends across the Ln period. For HSE, the band gap between O 2p states and lanthanide 5d states is nearly independent of the lanthanide, while the minimum gap varies as filled or empty Ln 4f states come into this gap. sX-LDA predicts the unoccupied 4f levels at higher energies, which leads to a better agreement with experiments for Sm2O 3, Eu2O3, and Yb2O3. © 2013 American Physical Society.