1000 resultados para Electrical behaviors
Resumo:
A responsive polymer composite film was generated by the use of reversibly switchable Surface morphology of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films in response to different block selective solvents on the rough isotactic poly(propylene) (i-PP) substrate. The Maximum difference of the water contact angle of the composite films increased from 22.6 degrees of PS-b-PMMA films on the smooth substrate to 42.6 degrees when they were treated by PS and PMMA selective solvents, respectively. The mechanisms of the responsive extent enhanced and the superhydrophobicity of the composite films were discussed in detail.
Resumo:
Micro-failure modes and statistical fragment lengths in the hybrid fiber and non-hybrid reference composites in the uniaxial tension were investigated. Similiar to the reference experiments, fibers in hybrid strong interface/medium interface fiber composites display a decrease in aspect ratio and an increase in interfacial shear stress (IFSS) with the increase of inter-fiber spacing. While for the fibers with weak interfaces in the hybrid strong interface/weak interface fiber composites, the aspect ratio increases and IFSS decreases with enlargement of inter-fiber spacing, which is contrary to other systems. Finite element numerical analysis was used to interpret the special phenomena.
Resumo:
A series of chromium(III) complexes LCrCl3 (4a-c) bearing chelating 2,2'-iminodiphenyisulfide ligands [L = (2-ArMeC=NAr)(2)S] was synthesized in good yields from the corresponding ligands and CrCl3.(THF). Using modified methylaluminoxane (MMAO) as a cocatalyst, these complexes display moderate activities towards ethylene polymerization, and produce highly linear polyethylenes with broad molecular weight distribution. Polymer yields, catalyst activities and the molecular weights, as well as the molecular weight distributions of the polymers can be controlled over a wide range by the variation of the structures of the chromium(III) complexes and the polymerization parameters, such as Al/Cr molar ratio, reaction temperature and ethylene pressure.
Resumo:
New series of oxides, La3MMo2O12 (M = In, Ga and Al), have been prepared by the solid-state reaction. The composition and elemental distribution were analyzed by the energy-dispersive X-ray (EDX) analysis. As determined by the X-ray diffraction (XRD), these compounds have similar crystal structures that can be indexed on a monoclinic cell at room temperature. AC impedance spectra and the DC electrical conductivity measurements in various atmospheres indicate that they are oxide ion conductors with ionic conductivities between 10(-2) and 10(-3) S/cm at 800 degrees C. The conductivity decreases in the order of La3GaMo2O12 > La3AlMo2O12 > La3InMo2O12, implying that the effect of cell volume and polarization associated with In3+, Ga3+ and Al3+ play an important role in the anion transport of these materials. The reversible phase transition was observed in all these compounds as confirmed by the differential thermal analysis (DTA) and dilatometric measurements.
Resumo:
To simulate the deformation and the fracture of gradual multi-fiber-reinforced matrix composites, a numerical simulation method for the mesoscopic mechanical behaviors was developed on the basis of the finite element and the Monte Carlo methods. The results indicate that the strength of a composite increases if the variability of statistical fiber strengths is decreased.
Resumo:
Sr2Fe1-xZnxNbO6-x/2 (0 <= x <= 0.5) and Sr2Fe1-xCuxNbO6-x/2 (0.01 <= x <= 0.05) with the double perovskite structure have been synthesized. The crystal structures at room temperature were determined from Rietveld refinements of X-ray powder diffraction data. The plots of the imaginary parts of the impedance spectrum, Z '', and the electric modulus, M '', versus log (frequency), possess maxima for both curves separated by less than a half decade in frequency with associated capacities of 2 nF. The enhancement of the overall conductivity Of Sr2Fe1-xMxNbO6-x/2 (M = Cu and Zn) is observed, as increases from 2.48 (3) x 10(-4) S/cm for Sr2FeNbO6 to 3.82 (5) x 10(-3) S/cm for Sr2Fe0.8Zn0.2NbO5.9 at 673 K. Sr2Fe0.8Zn0.2NbO5.9 is chemically stable under the oxygen partial pressure from 1 atm to 10(-22) atm at 873 K. The p and n-type electronic conductions are dominant under oxidizing and reducing conditions, respectively, suggesting a small-polaron hopping mechanism of electronic conduction.
Resumo:
Isothermal crystallization, subsequent melting behavior and non-isothermal crystallization of nylon 1212 samples have been investigated in the temperature range of 160-171 degreesC using a differential scanning calorimeter (DSC). Subsequent DSC scans of isothermally crystallized samples exhibited three melting endotherms. The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and non-isothermal crystallizations of nylon 1212. The Avrami exponent n was evaluated, and was found to be in the range of 1.56-2.03 for isothermal crystallization, and of 2.38-3.05 for non-isothermal crystallization. The activation energies (DeltaE) were determined to be 284.5 KJ/mol and 102.63 KJ/mol, respectively, for the isothermal and non-isothermal crystallization processes by the Arrhenius' and the Kissinger's methods.
Resumo:
The isothermal crystallization and melting behaviors of poly(propylene carbonate) end-capped with benzenesulfonyl/poly (vinyl alcohol) (PPC-BS/PVA) blends over rich PVA composition range were first investigated by differential scanning calorimetry (DSC). PPS-BS/PVA interaction parameter, chi(12), calculated from equilibrium melting temperature depression was -0.44, revealing miscibility of PPC-BS with PVA in the melt and favorable interactions. The temperature dependence of crystallization rate constant at initial crystallization stage was analyzed using the modified Lauritzen-Hoffman expression. The chain width, a(0), the thickness of a monomolecular layer, b(0), the fold and lateral surface-free energies, sigma(e) and sigma, and the work of chain folding, q, for neat PVA were first reckoned to be 4.50 Angstrom, 4.78 Angstrom, 76.0 erg.cm(-2), and 4.70 kcal.mol(-1), respectively. The values of sigma(e) and q for PVA in PPC-BS/PVA blends exhibited a maximum in the neighborhood of 10/90 PPC-BS/PV, respectively.
Resumo:
A new series of oxides, Ce6-xErxMoO15-delta (0.0 less than or equal to x less than or equal to 1.5), was synthesized using wet-chemistry techniques. The precursors and resultant oxide powders were characterized by differential thermal analysis/thermogravimetry, x-ray diffraction, and IR, Raman and x-ray photoelectron spectroscopy. The formation temperature of the powders was found to be as low as 350degreesC. Ce6-xErxMoO15-delta crystallized to a fluorite-related cubic structure. The electrical conductivity of the samples was investigated by using ac impedance spectroscopy. This showed that the presence of Er was related to the oxygen-ion conductivity, and that the highest oxygen-ion conductivity was found in Ce6-xErxMoO15-delta (x = 0.4), ranging from 5.9 x 10(-5) S cm(-1) at 300degreesC to 1.26 x 10(-2) S cm(-1) at 700degreesC, respectively. This kind of material shows a potential application in intermediate-temperature solid oxide fuel cells.
Resumo:
Gold nanopartides were Immobilized onto the electrode surface by simple self-assembly technique. Interestingly, the ensembles of these nanopartides exhibit quantized charging behaviors in aqueous solution. Possible mechanism for such behaviors was proposed.
Resumo:
In this paper, we study the effects of electrical annealing at different voltages on the performance of organic light-emitting diodes. The light-emitting diodes studied here are single-layer devices based on a conjugated dendrimer doped with 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole as the emissive layer. We find that these devices can be annealed electrically by applying a voltage. This process reduces the turn-on voltage and enhances the brightness and efficiency. We obtained an external electroluminescence quantum efficiency of 0.07% photon/electron and a brightness of 2900 cd m(-2) after 12.4 V electrical annealing, which are about 6 times and 9 times higher than un-annealing devices, respectively. The improved luminance and efficiency are attributed to the presence of a space charge field near the electrodes caused by charging of traps.
Resumo:
Multilayer films composed of heteropolyanions (HPAS, SiMo11 VO405-) and cationic polymer poly(diallyldimethylammonium chloride) on 4-aminothiophenol self-assembled-monolayer were fabricated by electrochemical growth. Growth processes of the composite films were characterized by cyclic voltammetry. The results prove the third redox peak of Mo increases more rapidly, otherwise the other Mo redox peaks increase very slowly when the number of layers of heteropolyanions is greater. The peak potentials of composite films shift linearly to negative position with higher pH, which implies that protons are involved in the redox processes of HPA. The investigation of electrocatalytic behaviors of composite films shows a good catalytic activity for the reductions of HNO2 and BrO3-. Catalytic currents increase with increasing number of layers of heteropolyanions, moreover, the catalytic currents have a good linear relationship with the concentrations of BrO3-.
Resumo:
The binary blends of polyamide 1010 (PA1010) with the high-impact polystyrene (HIPS)/maleic anhydride (MA) graft copolymer (HIPS-g-MA) and with HIPS were prepared using a wide composition range. Different blend morphologies were observed by scanning electron microscopy according to the nature and content of PA1010 used. Compared with the PA1010/HIPS binary blends, the domain sizes of dispersed-phase particles in PA1010/HIPS-g-MA blends were much smaller than that in PA1010/HIPS blends at the same compositions. It was found that the tensile properties of PA1010/HIPS-g-MA blends were obviously better than that of PA 1010/HIPS blends. Wide-angle xray diffraction analyses were performed to confirm that the number of hydrogen bonds in the PA1010 phase decreased in the blends of PA1010/HIPS-g-MA. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/HIPS-g-MA blends.
Resumo:
The catalytic behaviors of a novel liquid acid catalyst (composed of heteropolyacid and acetic acid) for alkylation of isobutane with butene was investigated. As a solvent acetic acid had a synergistic effect. It enhanced the acid strength of HPA and its stability. The conditions for the formation of the catalytically active phase were studied systematically. The content of crystal water of HPA and the quantity of solvent affect the formation of active phase and the catalytic activity. Catalytically active phase consists of HPA, acetic acid and hydrocarbon produced from the reaction, as well as traces of water from the crystal water of HPA. This catalyst system is comparable to the sulfuric acid in catalytic activity.