951 resultados para Electric inverters
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, to solve the reconfiguration problem of radial distribution systems a scatter search, which is a metaheuristic-based algorithm, is proposed. In the codification process of this algorithm a structure called node-depth representation is used. It then, via the operators and from the electrical power system point of view, results finding only radial topologies. In order to show the effectiveness, usefulness, and the efficiency of the proposed method, a commonly used test system, 135-bus, and a practical system, a part of Sao Paulo state's distribution network, 7052 bus, are conducted. Results confirm the efficiency of the proposed algorithm that can find high quality solutions satisfying all the physical and operational constraints of the problem.
Resumo:
A new mixed-integer linear programming (MILP) model is proposed to represent the plug-in electric vehicles (PEVs) charging coordination problem in electrical distribution systems. The proposed model defines the optimal charging schedule for each division of the considered period of time that minimizes the total energy costs. Moreover, priority charging criteria is taken into account. The steady-state operation of the electrical distribution system, as well as the PEV batteries charging is mathematically represented; furthermore, constraints related to limits of voltage, current and power generation are included. The proposed mathematical model was applied in an electrical distribution system used in the specialized literature and the results show that the model can be used in the solution of the PEVs charging problem.
Resumo:
This study provides information on the reproductive biology of Narcine brasiliensis based on 105 individuals (72 females and 33 males) sampled in São Paulo State, Brazil. The total length at maturity for females was 318·9 mm and for males was 279·8 mm; pregnant females were observed only during summer and autumn. The peak of the gonado-somatic index for females and condition factor for males in the spring suggest a preparation for pregnancy and a mating period during this season. The capture of immature individuals indicates a need for management of the species in this region.
Resumo:
In the wake of current global image involving environmental impacts, the use of wind power has had a remarkable growth in recent years as a technique for generating electricity. In fact, it is a source featuring strong dissemination of technology which provides decrease in costs and a greater access to low-income electricity. PROINFA (Incentive Program for Alternative Energy Sources) promotes a greater diffusion of new technologies for power generation, in particular wind-produced. Due to such a scenario on the exploitation of such energy source, current analysis discusses strategies for the development of domestic wind technology and the implications for electricity-lacking rural areas. Analysis shows a similar behavior between rural populations lacking electricity and the amount of potential energy available in the region. It is expected that this assay will contribute towards the establishment of public policies for wind-energy parks on rural farms in the North and Northeast regions of Brazil.
Resumo:
The issue in this matter is that rules for use of electricity in rural areas are limited to the provision of inputs. Adopting guidelines to consider managed sub regions can generate poor results. The focus of this study was to present parameters for indicators of electric energy and agricultural production to allow the formation of city groups in Sao Paulo State, Brazil, with similar electric energy consumption and rural agricultural production. The methodology was the development of indicators that characterize the electric energy consumption/agricultural production and the preparation of groups using indicators with ward of statistical method of groups. The main conclusions were the formation of six homogeneous groups with similar characteristics regarding agricultural production/consumption of electricity. The application of these groups in cities with similar characteristics would produce more satisfactory results than the division of administrative Rural Development Offices (RDO).
Resumo:
Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with highspeed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr2O3 has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr2O3 single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Néel temperature.
Resumo:
The lack of data records of electric power consumption of smallphotovoltaic home systems, independently of the method used for sizing them, drives to consider the demand as a constant. However, the existing data reveal the variability of the consumption due to the influences of some social, cultural and psychosocial aspects of the human groups. This paper presents records of consumption data obtainedfrom several solar home systems (SHSs) in Brazil and Peru, and it discusses about the Gamma distribution function that can express to a great extent the behaviour of the demand. By this analysis it was verified that `a lot of people consume little and few people consume a lot`. In that sense, a few recommendations for sizing procedures that can be useful in the implantation of extensive programmes of rural electrification by SHSs are presented. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
By performing density functional theory calculations we show that it is possible to make the electronic bandgap in bilayer graphene supported on hexagonal boron nitride (h-BN) substrates tunable. We also show that, under applied electric fields, it is possible to insert states from h-BN into the bandgap, which generate a conduction channel through the substrate making the system metallic. In addition, we verify that the breakdown voltage strongly depends on the number of h-BN layers. We also show that both the breakdown voltage and the bandgap tuning are independent of the h-BN stacking order.
Resumo:
Our previous results on the nonperturbative calculations of the mean current and of the energy-momentum tensor in QED with the T-constant electric field are generalized to arbitrary dimensions. The renormalized mean values are found, and the vacuum polarization contributions and particle creation contributions to these mean values are isolated in the large T limit; we also relate the vacuum polarization contributions to the one-loop effective Euler-Heisenberg Lagrangian. Peculiarities in odd dimensions are considered in detail. We adapt general results obtained in 2 + 1 dimensions to the conditions which are realized in the Dirac model for graphene. We study the quantum electronic and energy transport in the graphene at low carrier density and low temperatures when quantum interference effects are important. Our description of the quantum transport in the graphene is based on the so-called generalized Furry picture in QED where the strong external field is taken into account nonperturbatively; this approach is not restricted to a semiclassical approximation for carriers and does not use any statistical assumptions inherent in the Boltzmann transport theory. In addition, we consider the evolution of the mean electromagnetic field in the graphene, taking into account the backreaction of the matter field to the applied external field. We find solutions of the corresponding Dirac-Maxwell set of equations and with their help we calculate the effective mean electromagnetic field and effective mean values of the current and the energy-momentum tensor. The nonlinear and linear I-V characteristics experimentally observed in both low-and high-mobility graphene samples are quite well explained in the framework of the proposed approach, their peculiarities being essentially due to the carrier creation from the vacuum by the applied electric field. DOI: 10.1103/PhysRevD.86.125022
Resumo:
It is well known that control systems are the core of electronic differential systems (EDSs) in electric vehicles (EVs)/hybrid HEVs (HEVs). However, conventional closed-loop control architectures do not completely match the needed ability to reject noises/disturbances, especially regarding the input acceleration signal incoming from the driver's commands, which makes the EDS (in this case) ineffective. Due to this, in this paper, a novel EDS control architecture is proposed to offer a new approach for the traction system that can be used with a great variety of controllers (e. g., classic, artificial intelligence (AI)-based, and modern/robust theory). In addition to this, a modified proportional-integral derivative (PID) controller, an AI-based neuro-fuzzy controller, and a robust optimal H-infinity controller were designed and evaluated to observe and evaluate the versatility of the novel architecture. Kinematic and dynamic models of the vehicle are briefly introduced. Then, simulated and experimental results were presented and discussed. A Hybrid Electric Vehicle in Low Scale (HELVIS)-Sim simulation environment was employed to the preliminary analysis of the proposed EDS architecture. Later, the EDS itself was embedded in a dSpace 1103 high-performance interface board so that real-time control of the rear wheels of the HELVIS platform was successfully achieved.
Resumo:
Objective: Patients with high cervical spinal cord injury are usually dependent on mechanical ventilation support, which, albeit life saving, is associated with complications and decreased life expectancy because of respiratory infections. Diaphragm pacing stimulation (DPS), sometimes referred to as electric ventilation, induces inhalation by stimulating the inspiratory muscles. Our objective was to highlight the indications for and some aspects of the surgical technique employed in the laparoscopic insertion of the DPS electrodes, as well as to describe five cases of tetraplegic patients submitted to the technique. Methods: Patient selection involved transcutaneous phrenic nerve studies in order to determine whether the phrenic nerves were preserved. The surgical approach was traditional laparoscopy, with four ports. The initial step was electrical mapping in order to locate the "motor points" (the points at which stimulation would cause maximal contraction of the diaphragm). If the diaphragm mapping was successful, four electrodes were implanted into the abdominal surface of the diaphragm, two on each side, to stimulate the branches of the phrenic nerve. Results: Of the five patients, three could breathe using DPS alone for more than 24 h, one could do so for more than 6 h, and one could not do so at all. Conclusions: Although a longer follow-up period is needed in order to reach definitive conclusions, the initial results have been promising. At this writing, most of our patients have been able to remain ventilator-free for long periods of time.