872 resultados para Educational algorithm


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature has identified issues around transitions among phases for all pupils (Cocklin, 1999) including pupils with special educational needs (SEN) (Morgan 1999, Maras and Aveling 2006). These issues include pupils’ uncertainties and worries about building size and spatial orientation, exposure to a range of teaching styles, relationships with peers and older pupils as well as parents’ difficulties in establishing effective communications with prospective secondary schools. Research has also identified that interventions to facilitate these educational transitions should consider managerial support, social and personal familiarisation with the new setting as well as personalised learning strategies (BECTA 2004). However, the role that digital technologies can play in supporting these strategies or facilitating the role of the professionals such as SENCos and heads of departments involved in supporting effective transitions for pupils with SEN has not been widely discussed. Uses of ICT include passing references of student-produced media presentations (Higgins 1993) and use of photographs of activities attached to a timetable to support familiarisation with the secondary curriculum for pupils with autism (Cumine et al. 1998).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose an efficient two-level model identification method for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularization parameters in the elastic net are optimized using a particle swarm optimization (PSO) algorithm at the upper level by minimizing the leave one out (LOO) mean square error (LOOMSE). Illustrative examples are included to demonstrate the effectiveness of the new approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper documents the extent of inequality of educational opportunity in India spanning the period 1983–2004 using National Sample Surveys. We build on recent developments in the literature that have operationalized concepts of inequality of opportunity theory and construct several indices of inequality of educational opportunity for an adult sample. Kerala stands out as the least opportunity-unequal state. Rajasthan, Gujarat, and Uttar Pradesh experienced large-scale falls in the ranking of inequality of opportunities. By contrast, West Bengal and Orissa made significant progress in reducing inequality of opportunity. We also examine the links between progress toward equality of opportunity and a selection of pro-poor policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bangladesh has experienced the largest mass poisoning of a population in history owing to contamination of groundwater with naturally occurring inorganic arsenic. Prolonged drinking of such water risks development of diseases and therefore has implications for children's cognitive and psychological development. This study examines the effect of arsenic contamination of tubewells, the primary source of drinking water at home, on the learning outcome of school-going children in rural Bangladesh using recent nationally representative data on secondary school children. We unambiguously find a negative and statistically significant correlation between mathematics scores and arsenic-contaminated drinking tubewells at home, net of the child's socio-economic status, parental background and school specific unobserved correlates of learning. Similar correlations are found for an alternative measure of student achievement and subjective well-being (i.e. self-reported measure of life satisfaction), of the student. We conclude by discussing the policy implication of our findings in the context of the current debate over the adverse effect of arsenic poisoning on children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in hardware and software in the past decade allow to capture, record and process fast data streams at a large scale. The research area of data stream mining has emerged as a consequence from these advances in order to cope with the real time analysis of potentially large and changing data streams. Examples of data streams include Google searches, credit card transactions, telemetric data and data of continuous chemical production processes. In some cases the data can be processed in batches by traditional data mining approaches. However, in some applications it is required to analyse the data in real time as soon as it is being captured. Such cases are for example if the data stream is infinite, fast changing, or simply too large in size to be stored. One of the most important data mining techniques on data streams is classification. This involves training the classifier on the data stream in real time and adapting it to concept drifts. Most data stream classifiers are based on decision trees. However, it is well known in the data mining community that there is no single optimal algorithm. An algorithm may work well on one or several datasets but badly on others. This paper introduces eRules, a new rule based adaptive classifier for data streams, based on an evolving set of Rules. eRules induces a set of rules that is constantly evaluated and adapted to changes in the data stream by adding new and removing old rules. It is different from the more popular decision tree based classifiers as it tends to leave data instances rather unclassified than forcing a classification that could be wrong. The ongoing development of eRules aims to improve its accuracy further through dynamic parameter setting which will also address the problem of changing feature domain values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution introduces a new digital predistorter to compensate serious distortions caused by memory high power amplifiers (HPAs) which exhibit output saturation characteristics. The proposed design is based on direct learning using a data-driven B-spline Wiener system modeling approach. The nonlinear HPA with memory is first identified based on the B-spline neural network model using the Gauss-Newton algorithm, which incorporates the efficient De Boor algorithm with both B-spline curve and first derivative recursions. The estimated Wiener HPA model is then used to design the Hammerstein predistorter. In particular, the inverse of the amplitude distortion of the HPA's static nonlinearity can be calculated effectively using the Newton-Raphson formula based on the inverse of De Boor algorithm. A major advantage of this approach is that both the Wiener HPA identification and the Hammerstein predistorter inverse can be achieved very efficiently and accurately. Simulation results obtained are presented to demonstrate the effectiveness of this novel digital predistorter design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolutionary meta-algorithms for pulse shaping of broadband femtosecond duration laser pulses are proposed. The genetic algorithm searching the evolutionary landscape for desired pulse shapes consists of a population of waveforms (genes), each made from two concatenated vectors, specifying phases and magnitudes, respectively, over a range of frequencies. Frequency domain operators such as mutation, two-point crossover average crossover, polynomial phase mutation, creep and three-point smoothing as well as a time-domain crossover are combined to produce fitter offsprings at each iteration step. The algorithm applies roulette wheel selection; elitists and linear fitness scaling to the gene population. A differential evolution (DE) operator that provides a source of directed mutation and new wavelet operators are proposed. Using properly tuned parameters for DE, the meta-algorithm is used to solve a waveform matching problem. Tuning allows either a greedy directed search near the best known solution or a robust search across the entire parameter space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyze and study a pervasive computing system in a mining environment to track people based on RFID (radio frequency identification) technology. In first instance, we explain the RFID fundamentals and the LANDMARC (location identification based on dynamic active RFID calibration) algorithm, then we present the proposed algorithm combining LANDMARC and trilateration technique to collect the coordinates of the people inside the mine, next we generalize a pervasive computing system that can be implemented in mining, and finally we show the results and conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To describe the training undertaken by pharmacists employed in a pharmacist-led information technology-based intervention study to reduce medication errors in primary care (PINCER Trial), evaluate pharmacists’ assessment of the training, and the time implications of undertaking the training. Methods: Six pharmacists received training, which included training on root cause analysis and educational outreach, to enable them to deliver the PINCER Trial intervention. This was evaluated using self-report questionnaires at the end of each training session. The time taken to complete each session was recorded. Data from the evaluation forms were entered onto a Microsoft Excel spreadsheet, independently checked and the summary of results further verified. Frequencies were calculated for responses to the three-point Likert scale questions. Free-text comments from the evaluation forms and pharmacists’ diaries were analysed thematically. Key findings: All six pharmacists received 22 hours of training over five sessions. In four out of the five sessions, the pharmacists who completed an evaluation form (27 out of 30 were completed) stated they were satisfied or very satisfied with the various elements of the training package. Analysis of free-text comments and the pharmacists’ diaries showed that the principles of root cause analysis and educational outreach were viewed as useful tools to help pharmacists conduct pharmaceutical interventions in both the study and other pharmacy roles that they undertook. The opportunity to undertake role play was a valuable part of the training received. Conclusions: Findings presented in this paper suggest that providing the PINCER pharmacists with training in root cause analysis and educational outreach contributed to the successful delivery of PINCER interventions and could potentially be utilised by other pharmacists based in general practice to deliver pharmaceutical interventions to improve patient safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For Northern Hemisphere extra-tropical cyclone activity, the dependency of a potential anthropogenic climate change signal on the identification method applied is analysed. This study investigates the impact of the used algorithm on the changing signal, not the robustness of the climate change signal itself. Using one single transient AOGCM simulation as standard input for eleven state-of-the-art identification methods, the patterns of model simulated present day climatologies are found to be close to those computed from re-analysis, independent of the method applied. Although differences in the total number of cyclones identified exist, the climate change signals (IPCC SRES A1B) in the model run considered are largely similar between methods for all cyclones. Taking into account all tracks, decreasing numbers are found in the Mediterranean, the Arctic in the Barents and Greenland Seas, the mid-latitude Pacific and North America. Changing patterns are even more similar, if only the most severe systems are considered: the methods reveal a coherent statistically significant increase in frequency over the eastern North Atlantic and North Pacific. We found that the differences between the methods considered are largely due to the different role of weaker systems in the specific methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Northern Hemisphere cyclone activity is assessed by applying an algorithm for the detection and tracking of synoptic scale cyclones to mean sea level pressure data. The method, originally developed for the Southern Hemisphere, is adapted for application in the Northern Hemisphere winter season. NCEP-Reanalysis data from 1958/59 to 1997/98 are used as input. The sensitivities of the results to particular parameters of the algorithm are discussed for both case studies and from a climatological point of view. Results show that the choice of settings is of major relevance especially for the tracking of smaller scale and fast moving systems. With an appropriate setting the algorithm is capable of automatically tracking different types of cyclones at the same time: Both fast moving and developing systems over the large ocean basins and smaller scale cyclones over the Mediterranean basin can be assessed. The climatology of cyclone variables, e.g., cyclone track density, cyclone counts, intensification rates, propagation speeds and areas of cyclogenesis and -lysis gives detailed information on typical cyclone life cycles for different regions. The lowering of the spatial and temporal resolution of the input data from full resolution T62/06h to T42/12h decreases the cyclone track density and cyclone counts. Reducing the temporal resolution alone contributes to a decline in the number of fast moving systems, which is relevant for the cyclone track density. Lowering spatial resolution alone mainly reduces the number of weak cyclones.