866 resultados para Ecological half-life
Resumo:
Species coexistence has been a fundamental issue to understand ecosystem functioning since the beginnings of ecology as a science. The search of a reliable and all-encompassing explanation for this issue has become a complex goal with several apparently opposing trends. On the other side, seemingly unconnected with species coexistence, an ecological state equation based on the inverse correlation between an indicator of dispersal that fits gamma distribution and species diversity has been recently developed. This article explores two factors, whose effects are inconspicuous in such an equation at the first sight, that are used to develop an alternative general theoretical background in order to provide a better understanding of species coexistence. Our main outcomes are: (i) the fit of dispersal and diversity values to gamma distribution is an important factor that promotes species coexistence mainly due to the right-skewed character of gamma distribution; (ii) the opposite correlation between species diversity and dispersal implies that any increase of diversity is equivalent to a route of “ecological cooling” whose maximum limit should be constrained by the influence of the third law of thermodynamics; this is in agreement with the well-known asymptotic trend of diversity values in space and time; (iii) there are plausible empirical and theoretical ways to apply physical principles to explain important ecological processes; (iv) the gap between theoretical and empirical ecology in those cases where species diversity is paradoxically high could be narrowed by a wave model of species coexistence based on the concurrency of local equilibrium states. In such a model, competitive exclusion has a limited but indispensable role in harmonious coexistence with functional redundancy. We analyze several literature references as well as ecological and evolutionary examples that support our approach, reinforcing the meaning equivalence between important physical and ecological principles.
Resumo:
Spiders are the most important terrestrial predators among arthropods. Their ecological success is reflected by a high biodiversity and the conquest of nearly every terrestrial habitat. Spiders are closely associated with silk, a material, often seen to be responsible for their great ecological success and gaining high attention in life sciences. However, it is often overlooked that more than half of all Recent spider species have abandoned web building or never developed such an adaptation. These species must have found other, more economic solutions for prey capture and retention, compensating the higher energy costs of increased locomotion activity. Here we show that hairy adhesive pads (scopulae) are closely associated with the convergent evolution of a vagrant life style, resulting in highly diversified lineages of at least, equal importance as the derived web building taxa. Previous studies often highlighted the idea that scopulae have the primary function of assisting locomotion, neglecting the fact that only the distal most pads (claw tufts) are suitable for those purposes. The former observations, that scopulae are used in prey capture, are largely overlooked. Our results suggest the scopulae evolved as a substitute for silk in controlling prey and that the claw tufts are, in most cases, a secondary development. Evolutionary trends towards specialized claw tufts and their composition from a low number of enlarged setae to a dense array of slender ones, as well as the secondary loss of those pads are discussed further. Hypotheses about the origin of the adhesive setae and their diversification throughout evolution are provided.
Resumo:
The strength of top-down indirect effects of carnivores on plants (trophic cascades) varies greatly and may depend on the identity of the intermediate (herbivore) species. If the effect strength is linked to functional traits of the herbivores then this would allow for more general predictions. Due to the generally sub-lethal effects of herbivory in terrestrial systems, trophic cascades manifest themselves in the first instance in the fitness of individual plants, affecting both their numerical and genetic contributions to the population. We directly compare the indirect predator effects on growth and reproductive output of individual Vicia faba plants mediated by the presence of two aphid species: Acyrtosiphon pisum is characterised by a boom and bust strategy whereby colonies grow fast and overexploit their host plant individual while Megoura viciae appear to follow a more prudent strategy that avoids over-exploitation and death of the host plant.Plants in the field were infested with A. pisum, M. viciae or both and half the plants were protected from predators. Exposure to predators had a strong impact on the biomass of individual plants and the strength of this effect differed significantly between the different herbivore treatments.A. pisum had a greater direct impact on plants and this was coupled with a significantly stronger indirect predator effect on plant biomass.Although the direct impact of predators was strongest on M. viciae, this was not transmitted to the plant level, indicating that the predator-prey interactions strength is not as important as the plant-herbivore link for the magnitude of the indirect predator impact. At the individual plant level, the indirect predator effect was purely due to consumptive effects on herbivore densities with no evidence for increased herbivore dispersal in response to presence of predators. The nature of plant-herbivore interactions is the key to terrestrial trophic cascade strength. The two herbivores that we compared were similar in feeding mode and body size but differed their way how they exploit host plants, which was the important trait explaining the strength of the trophic cascade.
Resumo:
Aim The Neotropical parrots (Arini) are an unusually diverse group which colonized South America in the Oligocene. The newly invaded Neotropics may have functioned as an underused adaptive zone and provided novel ecological opportunities that facilitated diversification. Alternatively, diversification may have been driven by ecological changes caused by Andean uplift and/or climate change from the Miocene onwards. Our aim was to find out whether Arini diversified in a classical adaptive radiation after their colonization of South America, or whether their diversification occurred later and was influenced by more recent environmental change. Location Neotropics. Methods We generated a time-calibrated phylogeny of more than 80% of all Arini species in order to analyse lineage diversification. This chronogram was also used as the basis for the reconstruction of morphological evolution within Arini using a multivariate ratio analysis of three size measurements. Results We found a concentration of size evolution and partitioning of size niches in the early history of Arini consistent with the process of adaptive radia- tion, but there were no signs of an early burst of speciation or a decrease in speci- ation rates through time. Although we detected no overall temporal shifts in diversification rates, we discovered two young, unexpectedly species-rich clades. Main conclusions Arini show signs of an early adaptive radiation, but we found no evidence of the slowdown in speciation rate generally considered a feature of island or lake radiations. Historical processes and environmental change from the Miocene onwards may have kept diversification rates roughly constant ever since the colonization of the Neotropics. Thus, Arini may not yet have reached equilibrium diversity. The lack of diversity-dependent speciation might be a general feature of adaptive radiations on a continental scale, and diversification processes on continents might therefore not be as ecologically limited as in isolated lakes or on oceanic islands.
Resumo:
While ecological monitoring and biodiversity assessment programs are widely implemented and relatively well developed to survey and monitor the structure and dynamics of populations and communities in many ecosystems, quantitative assessment and monitoring of genetic and phenotypic diversity that is important to understand evolutionary dynamics is only rarely integrated. As a consequence, monitoring programs often fail to detect changes in these key components of biodiversity until after major loss of diversity has occurred. The extensive efforts in ecological monitoring have generated large data sets of unique value to macro-scale and long-term ecological research, but the insights gained from such data sets could be multiplied by the inclusion of evolutionary biological approaches. We argue that the lack of process-based evolutionary thinking in ecological monitoring means a significant loss of opportunity for research and conservation. Assessment of genetic and phenotypic variation within and between species needs to be fully integrated to safeguard biodiversity and the ecological and evolutionary dynamics in natural ecosystems. We illustrate our case with examples from fishes and conclude with examples of ongoing monitoring programs and provide suggestions on how to improve future quantitative diversity surveys.
Resumo:
Phenotypic differences among closely related populations and species can cause contrasting effects on ecosystems; however, it is unknown whether such effects result from genetic divergence, phenotypic plasticity, or both. To test this, we reared sympatric limnetic and benthic species of whitefish from a young adaptive radiation in a common garden, where the benthic species was raised on two distinct food types. We then used these fish in a mesocosm experiment to test for contrasting ecosystem effects of closely related species and of plastically induced differences within a species. We found that strong contrasting ecosystem effects resulted more frequently from genetic divergence, although they were not stronger overall than those resulting from phenotypic plasticity. Overall, our results provide evidence that genetically based differences among closely related species that evolved during a young adaptive radiation can affect ecosystems, and that phenotypic plasticity can modify the ecosystem effects of such species.
Resumo:
The European standard for gillnetsampling to characterize lake fish communities stratifies sampling effort (i.e., number of nets) within depth strata. Nets to sample benthic habitats are randomly distributed throughout the lake within each depth strata. Pelagic nets are also stratified by depth, but are set only at the deepest point of the lake. Multiple authors have suggested that this design under-represents pelagic habitats, resulting in estimates of whole-lake CPUE and community composition which are disproportionately influenced by ecological conditions of littoral and benthic habitats. To address this issue, researchers have proposed estimating whole-lake CPUE by weighting the catch rate in each depth-compartment by the proportion of the volume of the lake contributed by the compartment. Our study aimed to assess the effectiveness of volume-weighting by applying it to fish communities sampled according to the European standard (CEN), and by a second whole-lake gillnetting protocol (VERT), which prescribes additional fishing effort in pelagic habitats. We assume that convergence between the protocols indicates that volume-weighting provides a more accurate estimate of whole-lake catch rate and community composition. Our results indicate that volume-weighting improves agreement between the protocols for whole-lake total CPUE, estimated proportion of perch and roach and the overall fish community composition. Discrepancies between the protocols remaining after volume-weighting maybe because sampling under the CEN protocol overlooks horizontal variation in pelagic fish communities. Analyses based on multiple pelagic-set VERT nets identified gradients in the density and biomass of pelagic fish communities in almost half the lakes that corresponded with the depth of water at net-setting location and distance along the length of a lake. Additional CEN pelagic sampling effort allocated across water depths and distributed throughout the lake would therefore help to reconcile differences between the sampling protocols and, in combination with volume-weighting, converge on a more accurate estimate of whole-lake fish communities.
Resumo:
BACKGROUND Information about the impact of cancer treatments on patients' quality of life (QoL) is of paramount importance to patients and treating oncologists. Cancer trials that do not specify QoL as an outcome or fail to report collected QoL data, omit crucial information for decision making. To estimate the magnitude of these problems, we investigated how frequently QoL outcomes were specified in protocols of cancer trials and subsequently reported. DESIGN Retrospective cohort study of RCT protocols approved by six research ethics committees in Switzerland, Germany, and Canada between 2000 and 2003. We compared protocols to corresponding publications, which were identified through literature searches and investigator surveys. RESULTS Of the 173 cancer trials, 90 (52%) specified QoL outcomes in their protocol, 2 (1%) as primary and 88 (51%) as secondary outcome. Of the 173 trials, 35 (20%) reported QoL outcomes in a corresponding publication (4 modified from the protocol), 18 (10%) were published but failed to report QoL outcomes in the primary or a secondary publication, and 37 (21%) were not published at all. Of the 83 (48%) trials that did not specify QoL outcomes in their protocol, none subsequently reported QoL outcomes. Failure to report pre-specified QoL outcomes was not associated with industry sponsorship (versus non-industry), sample size, and multicentre (versus single centre) status but possibly with trial discontinuation. CONCLUSIONS About half of cancer trials specified QoL outcomes in their protocols. However, only 20% reported any QoL data in associated publications. Highly relevant information for decision making is often unavailable to patients, oncologists, and health policymakers.
Resumo:
Alien plants provide a unique opportunity to study evolution in novel environments, but relatively little is known about the extent to which they become locally adapted to different environments across their new range. Here, we compare northern and southern populations of the introduced species Senecio squalidus in Britain; S. squalidus has been in southern Britain for approximately 200 years and reached Scotland only about 50 years ago. We conducted common garden experiments at sites in the north and south of the species’ range in Britain. We also conducted glasshouse and growth chamber experiments to test the hypothesis that southern genotypes flower later, are more drought-tolerant, germinate and establish better at warmer temperatures, and are less sensitive to cold stress than their more northern counterparts. Results from the common garden experiments are largely consistent with the hypothesis of rapid adaptive divergence of populations of the species within the introduced range, with genotypes typically showing a home-site advantage. Results from the glasshouse and growth chamber experiments demonstrate adaptive divergence in ability to tolerate drought stress and high temperatures, as well as in phenology. In particular, southern genotypes were more tolerant of dry conditions and high temperatures and they flowered later than northern genotypes. Our results show that rapid local adaptation can occur in alien species, and they have implications for our understanding of the ecological genetics of range expansion of introduced weeds.