987 resultados para ETHYLENE POLYMERIZATION CATALYSTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several zeolite catalysts such as SAPO-11, ZSM-11, ZSM-12, etc. were selected to convert I-hexene to branched hexenes in this work. Pore size of the zeolite catalyst plays an important role on the yield and the distribution of branched isohexenes. And the zeolite catalysts with the pore size of 0.6nm are optimum to produce dimethylbutenes (DMB). SAPO-11 zeolite is a suitable skeletal isomerization catalyst, especially in the production of methyl pentenes. Under the following reaction conditions: WHSV=1.0 h(-1), H-2/hexene=8, T=250 degreesC, P=0.2 MPa, the yield of skeletal isohexenes remains above 80% at the prolonged time-on stream of 80 h, accompanying low C5-, C7+ products and low carbon deposition on the catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic decomposition of hydrazine over a series of MoNx/gamma-Al2O3 catalysts with different Mo loadings was investigated in a monopropellant thruster (10 N). When the Mo loading is equal to or higher than the monolayer coverage of MoO3 on gamma-Al2O3, the catalytic performance of the supported molybdenum nitride catalyst is close to that of the conventionally used Ir/gamma-Al2O3 catalyst. The MoNx/gamma-Al2O3 catalyst with a loading of about 23wt% Mo (1.5 monolayers) shows the highest activity for hydrazine decomposition. There is an activation process for the MoNx/gamma-Al2O3 catalysts at the early stage of hydrazine decomposition, which is probably due to the reduction of the oxide layer formed in the passivation procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monolithic capillary columns for affinity chromatography were prepared by an in situ polymerization procedure using glycidyl methacrylate (GMA) as a monomer and trimethylolpropane trimethacrylate (TRIM) and ethylene dimethacrylate (EDMA) as cross-linkers, respectively. Scanning electron microscopy was applied to characterize the morphology of the end of monolithic capillary and mercury intrusion porosimetry to characterize the polymer rod prepared within the confines of a stainless steel column with 50 mm x 4.6 mm i.d. under the same polymerization condition. Obvious differences in the porous properties between the TRIM- and EDMA-based monoliths could be observed. Moreover, the mechanical stability of these two monolithic capillary columns was compared by testing the reproducibility of the column performance. The rod prepared with GMA and TRIM proved to be mechanically more stable than that prepared with GMA and EDMA. Protein A was immobilized on the monolithic rod for affinity chromatography and the experiments were performed on a capillary electrophoresis instrument, using its pressure system as the driving force. Non-specific adsorption was not observed on the TRIM-based affinity column, as proved with bovine serum albumin (BSA) as a test protein. The affinity column prepared with GMA and TRIM was then applied to determine the hIgG concentration in human serum. The correlative coefficient of the calibration curve reached 0.9942. The amount of adsorbed hIgG was unaffected by the flow rate of the loading buffer, which makes this method suitable for fast determination of biomacromolecules in microliter samples. (C) 2002 Elsevier Science B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of different species during the temperature-programmed surface reaction (TPSR) of methane over various catalysts is traced by an online mass spectrometer, It is demonstrated that the transformation of MoO3 to molybdenum carbide hinders the activation of methane as well as the succeeding aromatization in the TPSR, If this transformation process is done before the reaction, the temperature needed for methane activation and benzene formation will be greatly lowered (760 and 847 K, respectively). On the basis of comparison of the catalytic behavior of molybdenum supported on different zeolites, it is suggested that the initial activation of methane is the rate-determining step of this reaction. For the cobalt catalysts supported on HMCM-22 or Mo catalysts supported on TiO2, no benzene formation could be observed during the TPSR, However, the prohibition of benzene formation is different in nature over these two catalysts: the former lacks the special properties exhibited by molybdenum carbide, which can continuously activate methane even when multiple layers of carbonaceous species are formed on its surface, while the latter cannot accomplish the aromatization reaction since there are no Bronsted acid sites to which the activated intermediates can migrate, although the activation of methane can be achieved on it. Only for the catalysts that possess both of these properties, together with the special channel structure of zeolite, can efficient methane aromatization be accomplished. (C) 2000 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mass transfer resistance in the production of high impact polypropylene (hiPP) produced by a two-stage slurry/gas polymerization was investigated by field-emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. It is found that the formation of ethylene-propylene copolymer (EPR) phases in polypropylene (iPP) particle produced in the first stage slurry polymerization exhibits a developing process from exterior to interior

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a novel strategy for the preparation of ion-bonded supramolecular star polymers by RAFT polymerization. An ion-bonded star supramolecule with six functional groups was prepared from a triphenylene derivative containing tertiary amino groups and trithiocarbonate carboxylic acid, and used as the RAFT agent in polymerizations of tert-butyl acrylate (tBA) and styrene (St). Molecular weights and structures of the polymers were characterized by H-1 NMR and GPC. The results show that the polymerization possesses the character of living free-radical polymerization and the ion-bonded supramolecular star polymers PSt, PtBA, and PSt-b-PtBA, with six well-defined arms, were successfully synthesized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to deal with the complicated relationships among the variables of the reactive extrusion process for activated anionic polymerization, a three-dimensional equivalent model of closely intermeshing co-rotating twin screw extruders was established. Then the numerical computation expressions of the monomer concentration, the monomer conversion, the average molecular weight and the fluid viscosity were deduced, and the numerical simulation of the reactive extrusion process of Styrene was carried out. At last, our simulated results were compared with Michaeli's simulated results and experimental results. (C) 2007 Elsevier B.V. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenolysis of mono(cyclopentadienyl)-ligated rare-earth-metal bis(alkyl) complexes Cp'Ln-(CH2SiMe3)2(THF) (Ln = Y (1a), Dy (1b), Lu (1c); Cp' = C5Me4SiMe3) with PhSiH3 afforded the mixed hydride/alkyl complexes [Cp'Ln(mu-H)(CH2SiMe3)(THF)](2) (Ln = Y (2a), Dy (2b), Lu (2c)). The overall structure of complexes 2a-c is a C-2-symmetric dimer containing a planar symmetric Ln(2)H(2) core at the center of the molecule. Deprotonation of ArOH (Ar = C6H2-Bu-t(2)-2,6-Me-4) by the metal alkyl group of 2a-c led to formation of the mixed hydride/aryloxide derivatives [Cp'Ln(mu-H)(OAr)](2) (Ln = Y (3a), Dy (3b), Lu (3c)), which adopt the dimeric structure through hydride bridges with trans-accommodated terminal aryloxide groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the concentration of a nucleating agent (NA), namely 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol (DMDBS), on the gamma phase content in a propylene/ethylene copolymer was investigated by means of Differential Scanning Calorimetry (DSC), Wide-Angle X-ray Diffraction (WAXD), Small- Angle X-ray Scatter (SAXS) and Polarized Optical Microscopy (POM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization behaviors and morphology of asymmetric crystalline-crystalline diblock copolymers poly(ethylene oxide-lactide) (PEO-b-PLLA) were investigated using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), and microscopic techniques (polarized optical microscopy (POM) and atomic force microscopy (AFM)). Both blocks of PEO5-b-PLLA(16) can be crystallized, which was confirmed by WAXD, while PEO block in PEO5-b-PLLA(30) is difficult to crystallize because of the confinement induced by the high glass transition temperature and crystallization of PLLA block with the microphase separation of the block copolymer.