957 resultados para ENERGY LANDSCAPE MODEL
Resumo:
The statistical behaviour of turbulent kinetic energy transport in turbulent premixed flames is analysed using data from three-dimensional Direct Numerical Simulation (DNS) of freely propagating turbulent premixed flames under decaying turbulence. For flames within the corrugated flamelets regime, it is observed that turbulent kinetic energy is generated within the flame brush. By contrast, for flames within the thin reaction zones regime it has been found that the turbulent kinetic energy decays monotonically through the flame brush. Similar trends are observed also for the dissipation rate of turbulent kinetic energy. Within the corrugated flamelets regime, it is demonstrated that the effects of the mean pressure gradient and pressure dilatation within the flame are sufficient to overcome the effects of viscous dissipation and are responsible for the observed augmentation of turbulent kinetic energy in the flame brush. In the thin reaction zones regime, the effects of the mean pressure gradient and pressure dilatation terms are relatively much weaker than those of viscous dissipation, resulting in a monotonic decay of turbulent kinetic energy across the flame brush. The modelling of the various unclosed terms of the turbulent kinetic energy transport equation has been analysed in detail. The predictions of existing models are compared with corresponding quantities extracted from DNS data. Based on this a-priori DNS assessment, either appropriate models are identified or new models are proposed where necessary. It is shown that the turbulent flux of turbulent kinetic energy exhibits counter-gradient (gradient) transport wherever the turbulent scalar flux is counter-gradient (gradient) in nature. A new model has been proposed for the turbulent flux of turbulent kinetic energy, and is found to capture the qualitative and quantitative behaviour obtained from DNS data for both the corrugated flamelets and thin reaction zones regimes without the need to adjust any of the model constants. © 2010 Springer Science+Business Media B.V.
Resumo:
The three-dimensional molecular models of DNA triple helices and triple-stranded brain-like structure were built up by molecular architecture, and their structural features and energy decomposition were examined. The results showed: (i) The base triplet is the element forming braid-like and triple helix DNA; (ii) Under specified conditions, DNA could form the triplet-stranded braid-like structure; (iii) DNA stability of the braid-like structure is less than that of the triple helix structure. (C) 1995 Academic Press Limited.
Resumo:
Quality control is considered from the simulator's perspective through comparative simulation of an ultra energy-efficient building with EE4-DOE2.1E and EnergyPlus. The University of Calgary's Leadership in Energy and Environmental Design Platinum Child Development Centre, with a 66% certified energy cost reduction rating, was the case study building. A Natural Resources Canada incentive program required use of EE4 interface with DOE2.1E simulation engine for energy modelling. As DOE2.1E lacks specific features to simulate advanced systems such as radiant cooling in the CDC, an EnergyPlus model was developed to further evaluate these features. The EE4-DOE2.1E model was used for quality control during development of the base EnergyPlus model and simulation results were compared. Advanced energy systems then added to the EnergyPlus model generated small difference in estimated total annual energy use. The comparative simulation process helped identify the main input errors in the draft EnergyPlus model. The comparative use of less complex simulation programs is recommended for quality control when producing more complex models. © 2009 International Building Performance Simulation Association (IBPSA).
Resumo:
This paper presents the development of a new building physics and energy supply systems simulation platform. It has been adapted from both existing commercial models and empirical works, but designed to provide expedient exhaustive simulation of all salient types of energy- and carbon-reducing retrofit options. These options may include any combination of behavioural measures, building fabric and equipment upgrades, improved HVAC control strategies, or novel low-carbon energy supply technologies. We provide a methodological description of the proposed model, followed by two illustrative case studies of the tool when used to investigate retrofit options of a mixed-use office building and primary school in the UK. It is not the intention of this paper, nor would it be feasible, to provide a complete engineering decomposition of the proposed model, describing all calculation processes in detail. Instead, this paper concentrates on presenting the particular engineering aspects of the model which steer away from conventional practise. © 2011 Elsevier Ltd.
Resumo:
Reducing energy consumption is a major challenge for "energy-intensive" industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of "optimized" operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method.
Resumo:
This paper reports the application of Advanced Process Control (APC) techniques for improving the thermal energy efficiency of a paperboard-making process by regulating the Machine Direction (MD) profile of the basis weight and moisture content of the paper-board. A Model Predictive Controller (MPC) is designed so that the sheet moisture and basis weight tracking errors along with variations of the sheet moisture and basis weight are reduced. Also, the drainage is maximised through improved wet-end stability which can facilitate driving the sheet moisture set-point closer to its upper specification limit over time. It is shown that the proposed strategy can result in reducing steam usage by 8-10%. A simulation study based on a UK board machine is presented to show the effectiveness of the proposed technique. © 2011 Intl Journal of Adv Mechatr.
Resumo:
The increasing pressure on material availability, energy prices, as well as emerging environmental legislation is leading manufacturers to adopt solutions to reduce their material and energy consumption as well as their carbon footprint, thereby becoming more sustainable. Ultimately manufacturers could potentially become zero carbon by having zero net energy demand and zero waste across the supply chain. The literature on zero carbon manufacturing and the technologies that underpin it are growing, but there is little available on how a manufacturer undertakes the transition. Additionally, the work in this area is fragmented and clustered around technologies rather than around processes that link the technologies together. There is a need to better understand material, energy, and waste process flows in a manufacturing facility from a holistic viewpoint. With knowledge of the potential flows, design methodologies can be developed to enable zero carbon manufacturing facility creation. This paper explores the challenges faced when attempting to design a zero carbon manufacturing facility. A broad scope is adopted from legislation to technology and from low waste to consuming waste. A generic material, energy, and waste flow model is developed and presented to show the material, energy, and waste inputs and outputs for the manufacturing system and the supporting facility and, importantly, how they can potentially interact. Finally the application of the flow model in industrial applications is demonstrated to select appropriate technologies and configure them in an integrated way. © 2009 IMechE.
Resumo:
Reducing energy consumption is a major challenge for energy-intensive industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of optimized operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method. © 2006 IEEE.
Resumo:
A computational impact analysis methodology has been developed, based on modal analysis and a local contact force-deflection model. The contact law is based on Hertz contact theory while contact stresses are elastic, defines a modified contact theory to take account of local permanent indentation, and considers elastic recovery during unloading. The model was validated experimentally through impact testing of glass-carbon hybrid braided composite panels. Specimens were mounted in a support frame and the contact force was inferred from the deceleration of the impactor, measured by high-speed photography. A Finite Element analysis of the panel and support frame assembly was performed to compute the modal responses. The new contact model performed well in predicting the peak forces and impact durations for moderate energy impacts (15 J), where contact stresses locally exceed the linear elastic limit and damage may be deemed to have occurred. C-scan measurements revealed substantial damage for impact energies in the range of 30-50 J. For this regime the new model predictions might be improved by characterisation of the contact law hysteresis during the unloading phase, and a modification of the elastic vibration response in line with damage levels acquired during the impact. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
A diffuse interface phase field model is proposed for the unified analysis of diffusive and displacive phase transitions under nonisothermal conditions. Two order parameters are used for the description of the phenomena: one is related to the solute mass fraction and the other to the strain. The model governing equations come from the balance of linear momentum, the solute mass balance (which will lead to the Cahn-Hilliard equation) and the balance of internal energy. Thermodynamic restrictions allow to define constitutive relations for the thermodynamic forces and for the mechanical and chemical dissipations. Numerical tests carried out at different values of the initial temperature show that the model is able to describe the main features of both the displacive and the diffusive phase transitions, as well as their effect on the temperature. © 2010, Advanced Engineering Solutions.
Resumo:
Growing environmental concerns caused by natural resource depletion and pollution need to be addressed. One approach to these problems is Sustainable Development, a key concept for our society to meet present as well as future needs worldwide. Manufacturing clearly has a major role to play in the move towards a more sustainable society. However it appears that basic principles of environmental sustainability are not systematically applied, with practice tending to focus on local improvements. The aim of the work presented in this paper is to adopt a more holistic view of the factory unit to enable opportunities for wider improvement. This research analyses environmental principles and industrial practice to develop a conceptual manufacturing ecosystem model as a foundation to improve environmental performance. The model developed focuses on material, energy and waste flows to better understand the interactions between manufacturing operations, supporting facilities and surrounding buildings. The research was conducted in three steps: (1) existing concepts and models for industrial sustainability were reviewed and environmental practices in manufacturing were collected and analysed; (2) gaps in knowledge and practice were identified; (3) the outcome is a manufacturing ecosystem model based on industrial ecology (IE). This conceptual model has novelty in detailing IE application at factory level and integrating all resource flows. The work is a base on which to build quantitative modelling tools to seek integrated solutions for lower resource input, higher resource productivity, fewer wastes and emissions, and lower operating cost within the boundary of a factory unit. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Powering electronics without depending on batteries is an open research field. Mechanical vibrations prove to be a reliable energy source, but low-frequency broadband vibrations cannot be harvested effectively using linear oscillators. This article discusses an alternative for harvesting such vibrations, with energy harvesters with two stable configurations. The challenges related to nonlinear dynamics are briefly discussed. Different existing designs of bistable energy harvesters are presented and classified, according to their feasibility for miniaturization. A general dynamic model for those designs is described. Finally, an extensive discussion on quantitative measures of evaluating the effectiveness of energy harvesters is accomplished, resulting in the proposition of a new dimensionless metric suited for a broadband analysis.
Resumo:
One of the main claims of the nonparametric model of random uncertainty introduced by Soize (2000) [3] is its ability to account for model uncertainty. The present paper investigates this claim by examining the statistics of natural frequencies, total energy and underlying dispersion equation yielded by the nonparametric approach for two simple systems: a thin plate in bending and a one-dimensional finite periodic massspring chain. Results for the plate show that the average modal density and the underlying dispersion equation of the structure are gradually and systematically altered with increasing uncertainty. The findings for the massspring chain corroborate the findings for the plate and show that the remote coupling of nonadjacent degrees of freedom induced by the approach suppresses the phenomenon of mode localization. This remote coupling also leads to an instantaneous response of all points in the chain when one mass is excited. In the light of these results, it is argued that the nonparametric approach can deal with a certain type of model uncertainty, in this case the presence of unknown terms of higher or lower order in the governing differential equation, but that certain expectations about the system such as the average modal density may conflict with these results. © 2012 Elsevier Ltd.
Resumo:
The diversity of non-domestic buildings at urban scale poses a number of difficulties to develop building stock models. This research proposes an engineering-based bottom-up stock model in a probabilistic manner to address these issues. School buildings are used for illustrating the application of this probabilistic method. Two sampling-based global sensitivity methods are used to identify key factors affecting building energy performance. The sensitivity analysis methods can also create statistical regression models for inverse analysis, which are used to estimate input information for building stock energy models. The effects of different energy saving measures are analysed by changing these building stock input distributions.
Resumo:
Identifying strategies for reducing greenhouse gas emissions from steel production requires a comprehensive model of the sector but previous work has either failed to consider the whole supply chain or considered only a subset of possible abatement options. In this work, a global mass flow analysis is combined with process emissions intensities to allow forecasts of future steel sector emissions under all abatement options. Scenario analysis shows that global capacity for primary steel production is already near to a peak and that if sectoral emissions are to be reduced by 50% by 2050, the last required blast furnace will be built by 2020. Emissions reduction targets cannot be met by energy and emissions efficiency alone, but deploying material efficiency provides sufficient extra abatement potential.