829 resultados para Dynamic Tattoo
Resumo:
Dynamic soundtracking presents various practical and aesthetic challenges to composers working with games. This paper presents an implementation of a system addressing some of these challenges with an affectively-driven music generation algorithm based on a second order Markov-model. The system can respond in real-time to emotional trajectories derived from 2-dimensions of affect on the circumplex model (arousal and valence), which are mapped to five musical parameters. A transition matrix is employed to vary the generated output in continuous response to the affective state intended by the gameplay.
Resumo:
A discrete-time random process is described, which can generate bursty sequences of events. A Bernoulli process, where the probability of an event occurring at time t is given by a fixed probability x, is modified to include a memory effect where the event probability is increased proportionally to the number of events that occurred within a given amount of time preceding t. For small values of x the interevent time distribution follows a power law with exponent −2−x. We consider a dynamic network where each node forms, and breaks connections according to this process. The value of x for each node depends on the fitness distribution, \rho(x), from which it is drawn; we find exact solutions for the expectation of the degree distribution for a variety of possible fitness distributions, and for both cases where the memory effect either is, or is not present. This work can potentially lead to methods to uncover hidden fitness distributions from fast changing, temporal network data, such as online social communications and fMRI scans.
Resumo:
Increasing prominence of the psychological ownership (PO) construct in management studies raises questions about how PO manifests at the level of the individual. In this article, we unpack the mechanism by which individuals use PO to express aspects of their identity and explore how PO manifestations can display congruence as well as incongruence between layers of self. As a conceptual foundation, we develop a dynamic model of individual identity that differentiates between four layers of self, namely, the “core self,” “learned self,” “lived self,” and “perceived self.” We then bring identity and PO literatures together to suggest a framework of PO manifestation and expression viewed through the lens of the four presented layers of self. In exploring our framework, we develop a number of propositions that lay the foundation for future empirical and conceptual work and discuss implications for theory and practice.
Resumo:
Bloom filters are a data structure for storing data in a compressed form. They offer excellent space and time efficiency at the cost of some loss of accuracy (so-called lossy compression). This work presents a yes-no Bloom filter, which as a data structure consisting of two parts: the yes-filter which is a standard Bloom filter and the no-filter which is another Bloom filter whose purpose is to represent those objects that were recognised incorrectly by the yes-filter (that is, to recognise the false positives of the yes-filter). By querying the no-filter after an object has been recognised by the yes-filter, we get a chance of rejecting it, which improves the accuracy of data recognition in comparison with the standard Bloom filter of the same total length. A further increase in accuracy is possible if one chooses objects to include in the no-filter so that the no-filter recognises as many as possible false positives but no true positives, thus producing the most accurate yes-no Bloom filter among all yes-no Bloom filters. This paper studies how optimization techniques can be used to maximize the number of false positives recognised by the no-filter, with the constraint being that it should recognise no true positives. To achieve this aim, an Integer Linear Program (ILP) is proposed for the optimal selection of false positives. In practice the problem size is normally large leading to intractable optimal solution. Considering the similarity of the ILP with the Multidimensional Knapsack Problem, an Approximate Dynamic Programming (ADP) model is developed making use of a reduced ILP for the value function approximation. Numerical results show the ADP model works best comparing with a number of heuristics as well as the CPLEX built-in solver (B&B), and this is what can be recommended for use in yes-no Bloom filters. In a wider context of the study of lossy compression algorithms, our researchis an example showing how the arsenal of optimization methods can be applied to improving the accuracy of compressed data.
Resumo:
Human induced land-use change (LUC) alters the biogeophysical characteristics of the land surface influencing the surface energy balance. The level of atmospheric CO2 is expected to increase in the coming century and beyond, modifying temperature and precipitation patterns and altering the distribution and physiology of natural vegetation. It is important to constrain how CO2-induced climate and vegetation change may influence the regional extent to which LUC alters climate. This sensitivity study uses the HadCM3 coupled climate model under a range of equilibrium forcings to show that the impact of LUC declines under increasing atmospheric CO2, specifically in temperate and boreal regions. A surface energy balance analysis is used to diagnose how these changes occur. In Northern Hemisphere winter this pattern is attributed in part to the decline in winter snow cover and in the summer due to a reduction in latent cooling with higher levels of CO2. The CO2-induced change in natural vegetation distribution is also shown to play a significant role. Simulations run at elevated CO2 yet present day vegetation show a significantly increased sensitivity to LUC, driven in part by an increase in latent cooling. This study shows that modelling the impact of LUC needs to accurately simulate CO2 driven changes in precipitation and snowfall, and incorporate accurate, dynamic vegetation distribution.
Resumo:
Yellow passion fruit pulp is unstable, presenting phase separation that can be avoided by the addition of hydrocolloids. For this purpose, xanthan and guar gum [0.3, 0.7 and 1.0% (w/w)] were added to yellow passion fruit pulp and the changes in the dynamic and steady-shear rheological behavior evaluated. Xanthan dispersions showed a more pronounced pseudoplasticity and the presence of yield stress, which was not observed in the guar gum dispersions. Cross model fitting to flow curves showed that the xanthan suspensions also had higher zero shear viscosity than the guar suspensions, and, for both gums, an increase in temperature led to lower values for this parameter. The gums showed different behavior as a function of temperature in the range of 5-35 degrees C. The activation energy of the apparent viscosity was dependent on the shear rate and gum concentration for guar, whereas for xanthan these values only varied with the concentration. The mechanical spectra were well described by the generalized Maxwell model and the xanthan dispersions showed a more elastic character than the guar dispersions, with higher values for the relaxation time. Xanthan was characterized as a weak gel, while guar presented a concentrated solution behavior. The simultaneous evaluation of temperature and concentration showed a stronger influence of the polysaccharide concentration on the apparent viscosity and the G` and G `` moduli than the variation in temperature.
Resumo:
We analyse the global structure of the phase space of the planar planetary 2/1 mean-motion resonance in cases where the outer planet is more massive than its inner companion. Inside the resonant domain, we show the existence of two families of periodic orbits, one associated to the librational motion of resonant angle (sigma-family) and the other related to the circulatory motion of the difference in longitudes of pericentre (Delta pi-family). The well-known apsidal corotation resonances (ACR) appear as intersections between both families. A complex web of secondary resonances is also detected for low eccentricities, whose strengths and positions are dependent on the individual masses and spatial scale of the system. The construction of dynamical maps for various values of the total angular momentum shows the evolution of the families of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems. For low-moderate eccentricities, several different stable modes exist outside the ACR. For larger eccentricities, however, all stable solutions are associated to oscillations around the stationary solutions. Finally, we present a possible link between these stable families and the process of resonance capture, identifying the most probable routes from the secular region to the resonant domain, and discussing how the final resonant configuration may be affected by the extension of the chaotic layer around the resonance region.
Resumo:
In this paper, we construct a dynamic portrait of the inner asteroidal belt. We use information about the distribution of test particles, which were initially placed on a perfectly rectangular grid of initial conditions, after 4.2 Myr of gravitational interactions with the Sun and five planets, from Mars to Neptune. Using the spectral analysis method introduced by Michtchenko et al., the asteroidal behaviour is illustrated in detail on the dynamical, averaged and frequency maps. On the averaged and frequency maps, we superpose information on the proper elements and proper frequencies of real objects, extracted from the data base, AstDyS, constructed by Milani and Knezevic. A comparison of the maps with the distribution of real objects allows us to detect possible dynamical mechanisms acting in the domain under study; these mechanisms are related to mean-motion and secular resonances. We note that the two- and three-body mean-motion resonances and the secular resonances (strong linear and weaker non-linear) have an important role in the diffusive transportation of the objects. Their long-lasting action, overlaid with the Yarkovsky effect, may explain many observed features of the density, size and taxonomic distributions of the asteroids.
Resumo:
This paper presents the second part in our study of the global structure of the planar phase space of the planetary three-body problem, when both planets lie in the vicinity of a 2/1 mean-motion resonance. While Paper I was devoted to cases where the outer planet is the more massive body, the present work is devoted to the cases where the more massive body is the inner planet. As before, outside the well-known Apsidal Corotation Resonances (ACR), the phase space shows a complex picture marked by the presence of several distinct regimes of resonant and non-resonant motion, crossed by families of periodic orbits and separated by chaotic zones. When the chosen values of the integrals of motion lead to symmetric ACR, the global dynamics are generally similar to the structure presented in Paper I. However, for asymmetric ACR the resonant phase space is strikingly different and shows a galore of distinct dynamical states. This structure is shown with the help of dynamical maps constructed on two different representative planes, one centred on the unstable symmetric ACR and the other on the stable asymmetric equilibrium solution. Although the study described in the work may be applied to any mass ratio, we present a detailed analysis for mass values similar to the Jupiter-Saturn case. Results give a global view of the different dynamical states available to resonant planets with these characteristics. Some of these dynamical paths could have marked the evolution of the giant planets of our Solar system, assuming they suffered a temporary capture in the 2/1 resonance during the latest stages of the formation of our Solar system.
Resumo:
Time-lagged responses of biological variables to landscape modifications are widely recognized, but rarely considered in ecological studies. In order to test for the existence of time-lags in the response of trees, small mammals, birds and frogs to changes in fragment area and connectivity, we studied a fragmented and highly dynamic landscape in the Atlantic forest region. We also investigated the biological correlates associated with differential responses among taxonomic groups. Species richness and abundance for four taxonomic groups were measured in 21 secondary forest fragments during the same period (2000-2002), following a standardized protocol. Data analyses were based on power regressions and model selection procedures. The model inputs included present (2000) and past (1962, 1981) fragment areas and connectivity, as well as observed changes in these parameters. Although past landscape structure was particularly relevant for trees, all taxonomic groups (except small mammals) were affected by landscape dynamics, exhibiting a time-lagged response. Furthermore, fragment area was more important for species groups with lower dispersal capacity, while species with higher dispersal ability had stronger responses to connectivity measures. Although these secondary forest fragments still maintain a large fraction of their original biodiversity, the delay in biological response combined with high rates of deforestation and fast forest regeneration imply in a reduction in the average age of the forest. This also indicates that future species losses are likely, especially those that are more strictly-forest dwellers. Conservation actions should be implemented to reduce species extinction, to maintain old-growth forests and to favour the regeneration process. Our results demonstrate that landscape history can strongly affect the present distribution pattern of species in fragmented landscapes, and should be considered in conservation planning. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Many of the controversies around the concept of homology rest on the subjectivity inherent to primary homology propositions. Dynamic homology partially solves this problem, but there has been up to now scant application of it outside of the molecular domain. This is probably because morphological and behavioural characters are rich in properties, connections and qualities, so that there is less space for conflicting character delimitations. Here we present a new method for the direct optimization of behavioural data, a method that relies on the richness of this database to delimit the characters, and on dynamic procedures to establish character state identity. We use between-species congruence in the data matrix and topological stability to choose the best cladogram. We test the methodology using sequences of predatory behaviour in a group of spiders that evolved the highly modified predatory technique of spitting glue onto prey. The cladogram recovered is fully compatible with previous analyses in the literature, and thus the method seems consistent. Besides the advantage of enhanced objectivity in character proposition, the new procedure allows the use of complex, context-dependent behavioural characters in an evolutionary framework, an important step towards the practical integration of the evolutionary and ecological perspectives on diversity. (C) The Willi Hennig Society 2010.
Resumo:
Ribosomal RNA genes are encoded by large units clustered (18S, 5S, and 28S) in the nucleolar organizer region in several organisms. Sometimes additional insertions are present in the coding region for the 28S rDNA. These insertions are specific non-long terminal repeat retrotransposons that have very restricted integration targets within the genome. The retrotransposon present in the genome of Rhynchosciara americana, RaR2, was isolated by the screening of a genomic library. Sequence analysis showed the presence of conserved regions, such as a reverse transcriptase domain and a zinc finger motif in the amino terminal region. The insertion site was highly conserved in R. americana and a phylogenetic analysis showed that this element belongs to the R2 clade. The chromosomal localization confirmed that the RaR2 mobile element was inserted into a specific site in the rDNA gene. The expression level of RaR2 in salivary glands during larval development was determined by quantitative RT-PCR, and the increase of relative expression in the 3P of the fourth instar larval could be related to intense gene activity characteristic of this stage. 5`-Truncated elements were identified in different DNA samples. Additionally, in three other Rhynchosciara species, the R2 element was present as a full-length element.
Resumo:
In Information Visualization, adding and removing data elements can strongly impact the underlying visual space. We have developed an inherently incremental technique (incBoard) that maintains a coherent disposition of elements from a dynamic multidimensional data set on a 2D grid as the set changes. Here, we introduce a novel layout that uses pairwise similarity from grid neighbors, as defined in incBoard, to reposition elements on the visual space, free from constraints imposed by the grid. The board continues to be updated and can be displayed alongside the new space. As similar items are placed together, while dissimilar neighbors are moved apart, it supports users in the identification of clusters and subsets of related elements. Densely populated areas identified in the incSpace can be efficiently explored with the corresponding incBoard visualization, which is not susceptible to occlusion. The solution remains inherently incremental and maintains a coherent disposition of elements, even for fully renewed sets. The algorithm considers relative positions for the initial placement of elements, and raw dissimilarity to fine tune the visualization. It has low computational cost, with complexity depending only on the size of the currently viewed subset, V. Thus, a data set of size N can be sequentially displayed in O(N) time, reaching O(N (2)) only if the complete set is simultaneously displayed.
Resumo:
This paper presents a new technique and two algorithms to bulk-load data into multi-way dynamic metric access methods, based on the covering radius of representative elements employed to organize data in hierarchical data structures. The proposed algorithms are sample-based, and they always build a valid and height-balanced tree. We compare the proposed algorithm with existing ones, showing the behavior to bulk-load data into the Slim-tree metric access method. After having identified the worst case of our first algorithm, we describe adequate counteractions in an elegant way creating the second algorithm. Experiments performed to evaluate their performance show that our bulk-loading methods build trees faster than the sequential insertion method regarding construction time, and that it also significantly improves search performance. (C) 2009 Elsevier B.V. All rights reserved.