985 resultados para Dry mass


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Respiration rates and electron transport system (ETS) activities were measured in dominant copepod species from the northern Benguela upwelling system in January-February 2011 to assess the accuracy of the ETS assay in predicting in vivo respiration rates. Individual respiration rates varied from 0.06 to 1.60 µL O2/h/ind, while ETS activities converted to oxygen consumption ranged from 0.14 to 4.46 µL O2/h/ind. ETS activities were significantly correlated with respiration rates (r**2 = 0.79, p = 0.0001). R:ETS ratios were lowest in slow-moving Eucalanidae (0.11) and highest in diapausing Calanoides carinatus copepodids CV (0.76) while fast-moving copepods showed intermediate R:ETS (0.23-0.37). 82% of the variance of respiration rates could be explained by differences in dry mass, temperature and the activity level of different copepod species. Three regression equations were derived to calculate respiration rates for diapausing, slow- and fast-moving copepods, respectively, based on parameters such as body mass and temperature. Thus, knowledge about the activity level and behavioral characteristics of copepod species can significantly increase the predictive accuracy of metabolic models, which will help to better understand and quantify the impact of copepods on nutrient and carbon fluxes in marine ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Between 1980 and 1985 ninety-seven stations were sampled by Smith-Mclntyre grab from the offshore northern section of the North Sea. Four hundred and nine infaunal species were identified from the 76 selected macrofaunal stations. The number of species per station varied from 25 to 80 with a maximum abundance of 9,600 individuals m**2. The biomass ranged from 0.13 to 18.86 g dry weight m**2. At most stations, however, biomass varied between 1 and 4 g dry weight m**2. Diversity and abundance were highest in the 120-140 m zone, characterised by fine sand containing variable amounts of silt. The highest biomasses were recorded in two areas; firstly where stronger currents predominate and the sediments are coarser (east of Shetland and west of the Norwegian Trough), and secondly in the fine sandy deposits of the centrally located area. In the silty sediments (Fladen Ground and smaller depressions) there was a predominantly subsurface deposit-feeding community, whereas in the coarser area east of the Shetlands carnivores predominated. Over the remaining area surface deposit feeders were dominant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of temperature and food was examined for Calanus finmarchicus and C. glacialis during 3 phases of the phytoplankton spring bloom in Disko Bay, western Greenland. The 2 species were collected during pre-bloom, bloom, and post-bloom and exposed to temperatures from 0 to 10°C, combined with deficient or excess food. Fecal pellet and egg production were measured as indices for grazing and secondary production, respectively. Furthermore, changes in body carbon, nitrogen, and lipid content were measured. C. glacialis sampled before the bloom and incubated with excess food exhibited high specific egg production at temperatures between 0 and 2.5°C. Higher temperatures did not increase egg production considerably, whereas egg production for C. finmarchicus more than tripled between 2.5 and 5°C. Starved C. glacialis produced eggs at all temperatures stimulated by increasing temperatures, whereas starved C. finmarchicus needed temperatures above 5°C to produce eggs fueled by their lipid stores. Few C. finmarchicus had mature gonads at the initiation of the pre-bloom and bloom experiment, and egg production of C. finmarchicus therefore only increased as the ratio of individuals with mature gonads increased. During the bloom, both C. glacialis and C. finmarchicus used the high food availability for egg production, while refueling or exhausting their lipid stores, respectively. Finally, during the post-bloom experiment, production was low by C. finmarchicus, whereas C. glacialis had terminated production. Our results suggest that a future warmer ocean will reduce the advantage of early spawning by C. glacialis and that C. finmarchicus will become increasingly prevalent.