999 resultados para Double lip
Resumo:
The disilylated compound 1,4-bis(trimethylsilyl)-2,3,5,6-tetrakis((dimethylamino)methyl)benzene, (Me(3)Si)(2)C2N4, 4, can be electrophilically palladated selectively at the C-Si bonds to afford the neutral 1,4-bis(palladium) complex [(AcOPd)(2)(C2N4)], from which the dicationic [(LPd)(2)(C2N4)](2+) (L = MeCN) organometallic species are accessible. The monosilylated species (Me(3)Si)(H)C2N4, 5, can be used for the preparation of the dicationic heterodinuclear platinum(II)-palladium(II) species [(LPd)(LPt)(C2N4)](2+) (L = MeCN) via a sequence of transmetalation of the organolithium derivative of 5 with [PtCl2(SEt(2))(2)], followed by a C-Si bond palladation reaction.
Resumo:
The new diarylplatinum complex Cis-[Pt(PEt(3))(2){C6H3(CH(2)NMe(2))(2)-3,5}(2)] 1, containing four free amine coordination sites, undergoes directed lithiation with Bu(t)Li and subsequent transmetallation with [PtCl2(SEt(2))(2)] to give a triplatinum species 3 which reductively eliminates the diplatinum complex[ClPt{2,6-(Me(2)NCH(2))(2)C6H2-C6H2(CH(2)NMe(2))(2)-2,6}PtCl] 4.
Resumo:
An electrochemical double layer capacitor test cell containing activated carbon xerogel electrodes and ionic liquid electrolyte was tested at 15, 25 and 40 OC to examine the effect of temperature on electrolyte resistance (RS) and equivalent series resistance (ESR) measured using impedance spectroscopy and capacitance using charge/discharge cycling. A commercial 10F capacitor was used as a comparison. Viscosity, ionic self-diffusion coefficients and differential scanning calorimetry measurements were used to provide an insight into the behaviour of the 1,2-dimethyl-3-propylimdazolium electrolyte. Both RS and ESR decreased with increasing temperature for both capacitors. Increasing the temperature also increased the capacitance for both the test cell and the commercial capacitor but proportionally more for the test cell. An increase in temperature decreased the ionic liquid electrolyte viscosity and increased the self diffusion coefficients of both the anion and the cation indicating an increase in dissociation and increase in ionic mobility.
Resumo:
Double-breasting has been identified as where companies run union voice and non-union voice mechanisms across different plants. While research has focused on the incidence of such arrangements, there is a dearth of evidence into the dynamics of it. This article seeks to complement existing research by examining the contours of double-breasting in a case study organisation. The findings suggest that more research is necessary into the dynamics of double-breasting in terms of how voice in sites affects each other and the extent to which running different regimes affects the managerial agenda.
Resumo:
We report a systematic study of double pulse pumping of the Ni-like Sm x-ray laser at 73 Angstrom, currently the shortest wavelength saturated x-ray laser. It is found that the Sm x-ray laser output can change by orders of magnitude when the intensity ratio of the pumping pulses and their relative delay are varied. Optimum pumping conditions are found and interpreted in terms of a simple model. (C) 1999 American Institute of Physics. [S0021-8979(99)07102-9].
Resumo:
From measurements of spatial coherence and beam divergence of Ge soft x-ray laser at a far field, the x-ray laser beam has been characterized as a partially coherent Gaussian beam. Double-pass amplification will improve spatial and temporal coherence, spectral brightness and efficiency. Close to 100% geometrical coupling efficiency has been obtained in double pass amplification in Ge. Transient loss of feedback is attributed to mirror structure damage within the build-up time of the x-ray laser. Prospect for generation of coherent x-ray laser beam is discussed.
Resumo:
The XUV lasing output from one germanium slab target has been efficiently coupled into, and further amplified in, a second plasma produced by irradiation of a similar target from the opposite direction. The operation of such a double target was shown to be strongly dependent on the distance by which the two target surfaces were displaced. The line brightness peaked for a surface displacement of approximately 200-mu-m and it was observed that the pointing direction of one output beam could be controlled by the surface separation in an asymmetric geometry. Gain length products of approximately 16 with estimated output powers close to the megawatt level were achieved on both the 23.2 and 23.6 nm J=2-1 transitions for an optimised target configuration. Maximum effective coupling efficiencies of the individual outputs from double targets, comprising 2.2 and 1.4 cm length components, approached 100% for beams propagating from the shorter to the longer target.
Resumo:
The use of two separate ultraintense laser pulses in laser-proton acceleration was compared to the single pulse case employing the same total laser energy. A double pulse profile, with the temporal separation of the pulses varied between 0.75-2.5 ps, was shown to result in an increased maximum proton energy and an increase in conversion efficiency to fast protons by up to a factor of 3.3. Particle-in-cell simulations indicate the existence of a two stage acceleration process. The second phase, induced by the main pulse preferentially accelerates slower protons located deeper in the plasma, in contrast to conventional target normal sheath acceleration.