984 resultados para Double Complex
Resumo:
The complex permittivity characteristics of epoxy nanocomposite systems were examined and an attempt has been made to understand the underlying physics governing some of the unique macroscopic dielectric behaviors. The experimental investigations were performed using two different nanocomposite systems with low filler concentrations over the frequency range of 10(-2)-400 Hz, but for some cases, the data has been reported upto 10(6) Hz for a better understanding of the behaviors. Results demonstrate that nanocomposites do possess unique permittivity behaviors as compared to those already known for unfilled polymer and microcomposite systems. The nanocomposite real permittivity and tan delta values are found to be lower than that of unfilled epoxy. In addition, results show that interfacial polarization and charge carrier mobilities are suppressed in epoxy nanocomposite systems. The complex permittivity spectra coupled with the ac conductivity characteristics with respect to frequency was found to be sufficient to identify several of the nanocomposite characteristics like the reduction in permittivity values, reduction in the interfacial polarization mechanisms and the electrical conduction behaviors. Analysis of the results are also performed using electric modulus formalisms and it has been seen that the nanocomposite dielectric behaviors at low frequencies can also be explained clearly using this formalism.
Resumo:
Propionate kinase catalyses the last step in the anaerobic breakdown of L-threonine to propionate in which propionyl phosphate and ADP are converted to propionate and ATR Here we report the structures of propionate kinase (TdcD) in the native form as well as in complex with diadenosine 5 ',5 '''-P-1,P-4-tetraphosphate (AP(4)A) by X-ray crystallography. Structure of TdcD obtained after cocrystallization with ATP showed Ap(4)A bound to the active site pocket suggesting the presence of Ap(4)A synthetic activity in TdcD. Binding of Ap(4)A to the enzyme was confirmed by the structure determination of a TdcD-Ap(4)A complex obtained after cocrystallization of TdcD with commercially available Ap(4)A. Mass spectroscopic studies provided further evidence for the formation of Ap(4)A by propionate kinase in the presence of ATP. In the TdcD-Ap(4)A complex structure, Ap(4)A is present in an extended conformation with one adenosine moiety present in the nucleotide binding site and other in the proposed propionate binding site. These observations tend to support direct in-line transfer of phosphoryl group during the kinase reaction.
Resumo:
Hydrazinium metal chlorides, (N2H5)2MCl4·2H2O (where M = Fe, Co, Ni and Cu), have been prepared from the aqueous solutions of the respective metal chlorides and hydrazine hydrochloride (N2H4·HCl or N2H4·2HCl) and investigated by spectral and thermal analyses. The crystal structure of the iron complex has been determined by direct methods and refined by full-matrix least-squares to an R of 0.023 and Rw of 0.031 for 1495 independent reflections. The structure shows ferrous ion in an octahedral environment bonded by two hydrazinium cations, two chloride anions and two water molecules. In the complex cation [Fe(N2H5)2(H2O)2Cl2]2+, the coordinated groups are in trans positions.
Resumo:
The protonic conductivity of ammonium ferrocyanide hydrate has been studied by the complex admittance method. The admittance plots show departures from ideal Debye behaviour. The values of ionic conductivity (sigma = 3.7 X 10(-5) (OMEGA-cm)-1) and diffusion coefficient (D = 3.8 X 10(-10) cm2/s) obtained at room temperature are consistent with the corresponding values estimated by an earlier NMR study.
Resumo:
Bowman-Birk inhibitors (BBI) isolated from plant seeds are small proteins active against trypsin and/or chymotrypsin. These inhibitors have been extensively studied in terms of their structure, interactions, function and evolution. Examination of the known three-dimensional structures of BBIs revealed similarities and subtle differences.The hydrophobic core, deduced from surface accessibility and hydrophobicity plots, corresponding to the two tandem structural domains of the double headed BBI are related by an almost exact two-fold, in contrast to the reactive site loops which depart appreciably from the two-fold symmetry. Also, the orientations of inhibitory loops in soybean and peanut inhibitors were different with respect to the rigid core. Based on the structure of Adzuki bean BBI-trypsin complex, models of trypsin and chymotryspin bound to the monomeric soybean BBI (SBI) were constructed. There were minor short contacts between the two enzymes bound to the inhibitor suggesting near independence of binding. Binding studies revealed that the inhibition of one enzyme in the presence of the other is associated with a minor negative cooperativity. In order to assess the functional significance of the reported oligomeric forms of BBI, binding of proteases to the crystallographic and non-crystallographic dimers as found in the crystal structure of peanut inhibitor were examined. It was found that all the active sites in these oligomers cannot simultaneously participate in inhibition.
Resumo:
Di-2-pyridylaminechloronitratocopper(II) hemihydrate, [CuCl(NO3)(C10H9N3)].0.5H2O, M(r) = 341.21, monoclinic, P2(1)/a, a = 7.382 (1), b = 21.494 (4), c = 8.032 (1) angstrom, beta = 94.26 (1)-degrees, V = 1270.9 angstrom 3, Z = 4, D(m) = 1.78, D(x) = 1.782 g cm-3, lambda(Mo K-alpha) = 0.7107 angstrom, mu(Mo K-alpha) = 19.47 cm-1, F(000) = 688. The structure was solved by the heavy-atom method and refined to a final R value of 0.034 for 2736 reflections collected at 294 K. The structure consists of polymeric [Cu(dipyam)Cl(NO3)] units bridged by a chloride ion.
Resumo:
The polyamines spermine, spermidine, putrescine, cadaverine, etc. have been implicated in a variety of cellular functions. However, details of their mode of interaction with other ubiquitous biomolecules is not known. We have solved a few structures of polyamine-amino acid complexes to understand the nature and mode of their interactions. Here we report the structure of a complex of putrescine with DL-glutamic acid. Comparison of the structure with the structure of putrescine-L-glutamic acid complex reveals the high degree of similarity in the mode of interaction in the two complexes. Despite the presence of a centre of symmetry in the present case, the arrangement of molecules is strikingly similar to the L-glutamic acid complex.
Resumo:
Transition metal ammonium double sulphates (NH4)2M(SO4)2· 6H2O, where M = Fe, Co and Ni react with hydrazine hydrate in air giving crystalline compounds of the general formula (N2H5) [M(N2H3COO)3] H2O. The reaction proceeds through (N2H5)2 M(SO4)2, · 3N2H4, (N2H5)2 [M(OH)4 · (N2H4)2], M(N2H3COO)2 · (N2H4)2 and N2H5 [M(N2 H3 COO)3] intermediates. The reaction sequence is followed by chemical analysis and infrared spectra. A possible reaction mechanism has been suggested.
Resumo:
A Schiff base metal complex, [Cu(II)(PLP-DL-tyrosinato)(H2O)].4H2O (PLP = pyridoxal phosphate), with the molecular formula CuC17O13N2H27P has been prepared and characterized by magnetic, spectral, and X-ray structural studies. The compound crystallizes in the triclinic space group P1BAR with a = 8.616 (2) angstrom, b = 11.843 (3) angstrom, c = 12.177 (3) angstrom, alpha = 103.40 (2)degrees, beta = 112.32 (2)degrees, gamma = 76.50 (1)degrees, and Z = 2. The structure was solved by the heavy-atom method and refined by least-squares techniques to a final R value of 0.057 for 3132 independent reflections. The coordination geometry around Cu(II) is distorted square pyramidal with phenolic oxygen, imino nitrogen, and carboxylate oxygen from the Schiff base ligand and water oxygen as basal donor atoms. The axial site is occupied by a phosphate oxygen from a neighboring molecule, thus resulting in a one-dimensional polymer. The structure reveals pi-pi interaction of the aromatic side chain of the amino acid with the pyridoxal pi system. A comparative study is made of this complex with similar Schiff base complexes. The variable-temperature magnetic behavior of this compound shows a weak antiferromagnetic interaction.
Resumo:
The diruthenium(II,III) compound [Ru2Cl(O2CC6H4-p-OMe)4](H2O)0.25 (1) has been prepared and its crystal structure determined by X-ray studies. The crystals belong to the triclinic space group, PImage , and the asymmetric unit consists of one full dimer and two half dimers. The {Ru2(O2CC6H4-p-OMe)4+} units are bridged by chloride ions into an infinite zigzag chain, with an average Ru---Cl distance and Ru---Cl---Ru angle of 2.567(2) Å and 121.0(1)°, respectively. The average Ru---Ru distance of 2.286(1) Å in 1 is comparable with that in analogous tetra-alkylcarboxylates, Ru2Cl(O2CR)4 and tetra-amidates, Ru2Cl(ArCONH)4.
Resumo:
A relatively stable specific complex of the chromatin core histones H2A, H2B, H3, and H4 has been obtained in 2 M NaCl/25 mM sodium phosphate buffer, pH 7.0. The histone core complex has an apparent specific volume of 0.73 ml/g. Its sedimentation coefficient was dependent on rotor speed (angular velocity, omega) and attained different stable values at low and high rotor speeds. The drop in sedimentation coefficient occurred sharply between omega 2 values of about 9 x 10(6) and 1.1 x 10(7) (radians/sec)2. The s020,w corresponding to zero angular velocity (1 atmosphere pressure) was 6.6 S +/- (SEM) 0.1 S. At high rotor speeds the value decreased to 3.8 S +/- 0.1 S. The core complex has a diffusion coefficient, D20,w, of 5.4 x 10(-7) cm2/sec and a molecular weight of 108,000 +/- (SD) 2500.
Resumo:
The temperature dependence of the chlorine-35 n.q.r. in the mercuric chloride-4-picoline N-oxide complex has been studied from 77 K to room temperature, and the results are used to assign the observed frequencies to terminal and bridging chlorines.
Resumo:
Terpyridine copper(II) complexes Cu(L)(2)](NO3)(2) where L is (4'-phenyl)-2 2' 6' 2 `'-terpyridine (ph-tpy in 1) and 4-(1 pyrenyl)]-2 2' 6' 2'-terpyridine (py-tpy in 2) are prepared characterized and their photocytotoxic activity studied The crystal structure of complex 1 shows distorted octahedral CuN6 coordination geometry The 1 2 electrolytic and one-electron paramagnetic complexes show a visible band near 650 nm in DMF-H2O The complexes show emission band at 352 nm for 1 and 425 nm for 2 when excited at 283 and 346 nm respectively The Cu(II)-Cu(I) redox couple is observed near -0 2 V versus SCE in DMF-0 1 m TBAP The complexes are avid partial-intercalative binders to calf thymus DNA giving binding constant (K-b) values of similar to 10(6) M-1 Complex 2 with its photoactive pyrenyl moiety exhibits significant photocleavage of pUC19 DNA in red light via singlet oxygen pathway Complex 2 also exhibits significant photo-activated cytotoxicity in HeLa cancer cells in visible light giving IC50 value of 11 9 mu M while being non-toxic in dark with an IC50 value of 130 5 mu M (C) 2010 Elsevier Ltd All rights reserved
Resumo:
The dielectric properties of BaBi4Ti4O15 ceramics were investigated as a function of frequency (10(2)-10(6) Hz) at various temperatures (30 degrees C-470 degrees C), covering the phase transition temperature. Two different conduction mechanisms were obtained by fitting the complex impedance data to Cole-Cole equation. The grain and grain boundary resistivities were found to follow the Arrhenius law associated with activation energies: E-g similar to 1.12 eV below T-m and E-g similar to 0.70 eV above T-m for the grain conduction; and E-gb similar to 0.93 eV below T-m and E-gb similar to 0.71 eV above T-m for the grain boundary conduction. Relaxation times extracted using imaginary part of complex impedance Z `'(omega) and modulus M `'(omega) were also found to follow the Arrhenius law and showed an anomaly around the phase transition temperature. The frequency dependence of conductivity was interpreted in terms of the jump relaxation model and was fitted to the double power law. (C) 2010 Elsevier B. V. All rights reserved.