914 resultados para Distinguishing Attack


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental study and optimization of Plasma Ac- tuators for Flow control in subsonic regime PRADEEP MOISE, JOSEPH MATHEW, KARTIK VENKATRAMAN, JOY THOMAS, Indian Institute of Science, FLOW CONTROL TEAM | The induced jet produced by a dielectric barrier discharge (DBD) setup is capable of preventing °ow separation on airfoils at high angles of attack. The ef-fect of various parameters on the velocity of this induced jet was studied experimentally. The glow discharge was created at atmospheric con-ditions by using a high voltage RF power supply. Flow visualization,photographic studies of the plasma, and hot-wire measurements on the induced jet were performed. The parametric investigation of the charac- teristics of the plasma show that the width of the plasma in the uniform glow discharge regime was an indication of the velocity induced. It was observed that the spanwise and streamwise overlap of the two electrodes,dielectric thickness, voltage and frequency of the applied voltage are the major parameters that govern the velocity and the extent of plasma.e®ect of the optimized con¯guration on the performance characteristics of an airfoil was studied experimentally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several endogenous and exogenous chemical species, particularly the so-called reactive oxygen species (ROS) and reactive nitrogen oxide species (RNOS), attack deoxyribonucleic acid (DNA) in biological systems producing DNA lesions which hamper normal cell functioning and cause various diseases including mutation and cancer. The guanine (G) base of DNA among all the bases is most susceptible and certain modified guanines get involved in mispairing with other bases during DNA replication. The biological system repairs the abnormal base pairs, but those that are still left cause mutation and cancer. Anti-oxidants present in biological systems can scavenge the ROS and RNOS. Thus three types of molecular events occur in biological media: (i) DNA damage, (ii) DNA repair, and (iii) prevention of DNA damage by scavenging ROS and RNOS. Quantum mechanical methods may be used to unravel molecular mechanisms of such phenomena. Some recent quantum theoretical results obtained on these problems are reviewed here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-component accelerometer balance system is used to study the drag reduction effect of an aerodisc on large angle blunt cones flying at hypersonic Mach numbers. Measurements in a hypersonic shock tunnel at a freestream Mach number of 5.75 indicate more than 50% reduction in the drag coefficient for a 120degrees apex angle blunt cone with a forward facing aerospike having a flat faced aerodisc at moderate angles of attack. Enhancement of drag has been observed for higher angles of attack due to the impingement of the flow separation shock on the windward side of the cone. The flowfields around the large angle blunt cone with aerospike assembly flying at hypersonic Mach numbers are also simulated numerically using a commercial CFD code. The pressure and density levels on the model surface, which is under the aerodynamic shadow of the flat disc tipped spike, are found very low and a drag reduction of 64.34% has been deduced numerically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compute the temperature profiles of accretion discs around rapidly rotating strange stars, using constant gravitational mass equilibrium sequences of these objects, considering the full effect of general relativity. Beyond a certain critical value of stellar angular momentum (J), we observe the radius ( $r_{\rm orb}$) of the innermost stable circular orbit (ISCO) to increase with J (a property seen neither in rotating black holes nor in rotating neutron stars). The reason for this is traced to the crucial dependence of ${\rm d}r_{\rm orb}/{\rm d}J$ on the rate of change of the radial gradient of the Keplerian angular velocity at $r_{\rm orb}$ with respect to J. The structure parameters and temperature profiles obtained are compared with those of neutron stars, as an attempt to provide signatures for distinguishing between the two. We show that when the full gamut of strange star equation of state models, with varying degrees of stiffness are considered, there exists a substantial overlap in properties of both neutron stars and strange stars. However, applying accretion disc model constraints to rule out stiff strange star equation of state models, we notice that neutron stars and strange stars exclusively occupy certain parameter spaces. This result implies the possibility of distinguishing these objects from each other by sensitive observations through future X-ray detectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Site-directed mutagenesis is widely used to study protein and nucleic acid structure and function. Despite recent advancements in the efficiency of procedures for site-directed mutagenesis, the fraction of site-directed mutants by most procedures rarely exceeds 50% on a routine basis and is never 100%. Hence it is typically necessary to sequence two or three clones each time a site-directed mutant is constructed. We describe a simple and robust gradient-PCR-based screen for distinguishing site-directed mutants from the starting, unmutated plasmid. The procedure can use either purified plasmid DNA or colony PCR, starting from a single colony. The screen utilizes the primer used for mutagenesis and a common outside primer that can be used for all other mutants constructed with the same template. Over 30 site-specific mutants in a variety of templates were successfully screened and all of the mutations detected were subsequently confirmed by DNA sequencing. A single base pair mismatch could be detected in an oligonucleotide of 36 bases. Detection efficiency was relatively independent of starting template concentration and the nature of the outside primer used. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The total solids of samples of ass's milk ranged from 7·80 to 9·10, the solids-not-fat from 7·14 to 8·50, and the fat from 0·54 to 0·71%. The nitrogen distribution in ass's milk is: casein 39·5, albumin 35·0, globulin 2·7 and non-protein nitrogen 22·8% of the total nitrogen. Ass's milk contains: casein 0·70, albumin 0·62 and globulin 0·07%. The total protein content is 1·39%. Ass's milk is therefore characterized by a low casein, a low globulin and a high albumin content. The non-protein nitrogen consists of amino nitrogen 8·1, urea nitrogen 24·3 and uric acid 0·7 mg./100 ml. of milk. The urea content is twice that present in cow's milk. The mean chloride and lactose contents of the milk samples are 0·037 and 6·1% respectively. The average calcium and phosphorus content of ass's milk are 0·081 and 0·059% respectively. Half the calcium is ionic, and half is in colloidal form. The phosphorus distribution is: total acid soluble 84·0, acid soluble organic 38·5, easily hydrolysable ester 27·4, inorganic 46·0, and colloidal inorganic 23·0 % of the total phosphorus. The ratio of CaO: P2O5 is 1:1. 46 % of the total phosphorus is in ester form; this is high when compared with only 12 % in cow's milk; most of the phosphoric ester forms soluble barium salts, which is a distinguishing feature of ass's milk. The total sulphur content is 15·8 mg./100 ml. The fat has a penetrating odour and is coloured orange-yellow. It has an iodine value of about 86, which is much higher than that for human milk fat. The Reichert (9·5) and Kirschner values (5·7) are low. In general, the composition of ass's milk resembles that of human rather than of cow's milk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of segregation and its influence on microstructural and phase evolution have been studied in MgO–MgAl2O4 powders synthesized by thermal decomposition of aqueous nitrate precursors. When the nitrate solutions of Mg and Al were spray-pyrolyzed on a substrate held at 673 or 573 K, homogeneous mixed oxides were produced. Spraying and drying the nitrate solutions at 473 K resulted in the formation of compositionally inhomogeneous, segregated oxide mixtures. It is suggested that segregation in the dried powders was caused by the difference in solubility of the individual nitrate salts in water which caused Mg-rich and Al-rich salts to precipitate during dehydration of the solutions. The occurrence of segregation in the powders sprayed at 473 K and not 573 or 673 K is ascribed to the sluggish rate at which the early stages of decomposition occurred during which the cations segregated. The phase evolution in segregated and segregation-free MgO–MgAl2O4 powders has been compared. The distinguishing feature of the segregated powders was the appearance of stoichiometric periclase grain dimensions in excess of 0.3 μm at temperatures as low as 973 K. By comparison, the segregation-free powders displayed broad diffraction peaks corresponding to fine-grained and nonstoichiometric periclase. The grain size was in the range 5–30 nm at temperatures up to 1173 K. The key to obtaining fine-grained periclase was the ability to synthesize (Mg Al)O solid solutions with the rock salt structure. In the temperature range 973–1173 K, spinel grain size varied from 5 to 40 nm irrespective of its composition and did not appear to be influenced by segregation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fly ash and silica fume are two pozzolans that have been widely used for improved concrete strength and durability. Silica fume displays a greater pozzolanic reactivity than fly ash primarily due to its finer particle size. The reactivity of fly ash can be improved by reducing its particle size distribution. This paper discusses the fresh and hardened properties of concrete made with an ultra-fine fly ash (UFFA) produced by air classification. Durability testing for chloride diffusivity, rapid chloride permeability, alkali-silica reaction (ASR), and sulfate attack was also conducted It was found that at a given workability and water content, concrete containing UFFA could be produced with only 50% of the high-range water-reducer dosage required for comparable silica fume concrete. Similar early strengths and durability measures as silica fume concrete were observed when a slightly higher dosage of UFFA was used with a small reduction (10%) in water content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We conducted surveys of fire and fuels managers at local, regional, and national levels to gain insights into decision processes and information flows in wildfire management. Survey results in the form of fire managers’ decision calendars show how climate information needs vary seasonally, over space, and through the organizational network, and help determine optimal points for introducing climate information and forecasts into decision processes. We identified opportunities to use climate information in fire management, including seasonal to interannual climate forecasts at all organizational levels, to improve the targeting of fuels treatments and prescribed burns, the positioning and movement of initial attack resources, and staffing and budgeting decisions. Longer-term (5–10 years) outlooks also could be useful at the national level in setting budget and research priorities. We discuss these opportunities and examine the kinds of organizational changes that could facilitate effective use of existing climate information and climate forecast capabilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Freshwater ecosystems vary in size and composition and contain a wide range of organisms which interact with each other and with the environment. These interactions are between organisms and the environment as nutrient cycling, biomass formation and transfer, maintenance of internal environment and interactions with the external environment. The range of organisms present in aquatic communities decides the generation and transfer function of biomass, which defines and characterises the system. These organisms have distinct roles as they occupy particular trophic levels, forming an interconnected system in a food chain. Availability of resources and competition would primarily determine the balance of individual species within the food web, which in turn influences the variety and proportions of the different organisms, with important implications for the overall functioning of the system. This dynamic and diverse relationship decides the physical, chemical and biological elements across spatial and temporal scales in the aquatic ecosystem, which can be recorded by regular inventorying and monitoring to maintain the integrity and conserve the ecosystem. Regular environmental monitoring, particularly water quality monitoring allows us to detect, assess and manage the overall impacts on the rivers. The appreciation of water quality is in constant flux. Water quality assessments derived through the biotic indices, i.e. assessments based on observations of the resident floral and faunal communities has gained importance in recent years. Biological evaluations provide a description of the water quality that is often not achievable from elemental analyses alone. A biological indicator (or bioindicator) is a taxon or taxa selected based on its sensitivity to a particular attribute, and then assessed to make inferences about that attribute. In other words, they are a substitute for directly measuring abiotic features or other biota. Bioindicators are evaluated through presence or absence, condition, relative abundance, reproductive success, community structure (i.e. composition and diversity), community function (i.e. trophic structure), or any combination thereof.Biological communities reflect the overall ecological integrity by integrating various stresses, thus providing a broad measure of their synergistic impacts. Aquatic communities, both plants and animals, integrate and reflect the effects of chemical and physical disturbances that occur over extended periods of time. Monitoring procedures based on the biota measure the health of a river and the ability of aquatic ecosystems to support life as opposed to simply characterising the chemical and physical components of a particular system. This is the central purpose of assessing the biological condition of aquatic communities of a river.Diatoms (Bacillariophyceae), blue green algae (Cyanophyceae), green algae (Chlorophyceae), and red algae (Rhodphyceae) are the main groups of algae in flowing water. These organisms are widely used as biological indicators of environmental health in the aquatic ecosystem because algae occupy the most basic level in the transfer of energy through natural aquatic systems. The distribution of algae in an aquatic ecosystem is directly related to the fundamental factors such as physical, chemical and biological constituents. Soft algae (all the algal groups except diatoms) have also been used as indicators of biological integrity, but they may have less efficiency than diatoms in this respect due to their highly variable morphology. The diatoms (Bacillariophyceae) comprise a ubiquitous, highly successful and distinctive group of unicellular algae with the most obvious distinguishing characteristic feature being siliceous cell walls (frustules). The photosynthetic organisms living within its photic zone are responsible for about one-half of global primary productivity. The most successful organisms are thought to be photosynthetic prokaryotes (cyanobacteria and prochlorophytes) and a class of eukaryotic unicellular algae known as diatoms. Diatoms are likely to have arisen around 240 million years ago following an endosymbiotic event between a red eukaryotic alga and a heterotrophic flagellate related to the Oomycetes.The importance of algae to riverine ecology is easily appreciated when one considers that they are primary producers that convert inorganic nutrients into biologically active organic compounds while providing physical habitat for other organisms. As primary producers, algae transform solar energy into food from which many invertebrates obtain their energy. Algae also transform inorganic nutrients, such as atmospheric nitrogen into organic forms such as ammonia and amino acids that can be used by other organisms. Algae stabilises the substrate and creates mats that form structural habitats for fish and invertebrates. Algae are a source of organic matter and provide habitat for other organisms such as non-photosynthetic bacteria, protists, invertebrates, and fish. Algae's crucial role in stream ecosystems and their excellent indicator properties make them an important component of environmental studies to assess the effects of human activities on stream health. Diatoms are used as biological indicators for a number of reasons: 1. They occur in all types of aquatic ecosystems. 2. They collectively show a broad range of tolerance along a gradient of aquatic productivity, individual species have specific water chemistry requirements. 3. They have one of the shortest generation times of all biological indicators (~2 weeks). They reproduce and respond rapidly to environmental change and provide early measures of both pollution impacts and habitat restoration. 4. It takes two to three weeks before changes are reflected to a measurable extent in the assemblage composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uranium-Plutonium mixed carbide with a Pu/(U+Pu) ratio of 0.55 is to be used as the fuel in the Fast Breeder Test Reaotor - (PBTRj at Kalpakkam, India. carbur ization of the stainlese steel clad by this fuel is determined by its carbon potential. - i. Because the carbon potential of this fuel composition is not 1 available in the literature, it was meadured by the methanehydrogen gas equilibration technique. The sample was equilibrated with purified hydrogen and the equilibrium methane-tohydrogen ratio in the gas phase was measured with a flame ionization detector. The carbon potential of the ThC-ThCz as well as Mo-Mo2C system,whiah is an important binary in the aotinide-fission product-carbon systems, were also measured by this technique, in the temperature range 973 K to 1173 K. The data for ! the Mo-MozC system are in agreement with values reported in the literature. The results for the ThC-ThC2 system are different from estimated values with large unaertainty limits given in the literature. The data on (U,Pu) mixed carbide indicates possibility of stainlesss steel clad attack under isothermal equilibrium conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multiple UAV search and attack mission in a battlefield involves allocating UAVs to different target tasks efficiently. This task allocation becomes difficult when there is no communication among the UAVs and the UAVs sensors have limited range to detect the targets and neighbouring UAVs, and assess target status. In this paper, we propose a team theoretic approach to efficiently allocate UAVs to the targets with the constraint that UAVs do not communicate among themselves and have limited sensor range. We study the performance of team theoretic approach for task allocation on a battle field scenario. The performance obtained through team theory is compared with two other methods, namely, limited sensor range but with communication among all the UAVs, and greedy strategy with limited sensor range and no communication. It is found that the team theoretic strategy performs the best even though it assumes limited sensor range and no communication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study is made of the rotation field in wedge indentation of metals using copper as the model material system. Wedges with apical angles of 60 and 120 are used to indent annealed copper, and the deformation is mapped using image correlation. The indentation of annealed and strain-hardened copper is simulated using finite element analysis. The rotation field, derived from the deformation measurements, provides a clear way of distinguishing between cutting and compressive modes of deformation. Largely unidirectional rotation on one side of the symmetry line with small spatial rotation gradients is characteristic of compression. Bidirectional rotation with neighboring regions of opposing rotations and locally high rotation gradients characterizes cutting. In addition, the rotation demarcates such characteristic regions as the pile-up zone in indentation of a strain-hardened metal. The residual rotation field obtained after unloading is essentially the same as that at full load, indicating that it is a scalar proxy for plastic deformation as a whole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rathour RK, Narayanan R. Influence fields: a quantitative framework for representation and analysis of active dendrites. J Neurophysiol 107: 2313-2334, 2012. First published January 18, 2012; doi:10.1152/jn.00846.2011.-Neuronal dendrites express numerous voltage-gated ion channels (VGICs), typically with spatial gradients in their densities and properties. Dendritic VGICs, their gradients, and their plasticity endow neurons with information processing capabilities that are higher than those of neurons with passive dendrites. Despite this, frameworks that incorporate dendritic VGICs and their plasticity into neurophysiological and learning theory models have been far and few. Here, we develop a generalized quantitative framework to analyze the extent of influence of a spatially localized VGIC conductance on different physiological properties along the entire stretch of a neuron. Employing this framework, we show that the extent of influence of a VGIC conductance is largely independent of the conductance magnitude but is heavily dependent on the specific physiological property and background conductances. Morphologically, our analyses demonstrate that the influences of different VGIC conductances located on an oblique dendrite are confined within that oblique dendrite, thus providing further credence to the postulate that dendritic branches act as independent computational units. Furthermore, distinguishing between active and passive propagation of signals within a neuron, we demonstrate that the influence of a VGIC conductance is spatially confined only when propagation is active. Finally, we reconstruct functional gradients from VGIC conductance gradients using influence fields and demonstrate that the cumulative contribution of VGIC conductances in adjacent compartments plays a critical role in determining physiological properties at a given location. We suggest that our framework provides a quantitative basis for unraveling the roles of dendritic VGICs and their plasticity in neural coding, learning, and homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most bacterial genomes harbor restriction-modification systems, encoding a REase and its cognate MTase. On attack by a foreign DNA, the REase recognizes it as nonself and subjects it to restriction. Should REases be highly specific for targeting the invading foreign DNA? It is often considered to be the case. However, when bacteria harboring a promiscuous or high-fidelity variant of the REase were challenged with bacteriophages, fitness was maximal under conditions of catalytic promiscuity. We also delineate possible mechanisms by which the REase recognizes the chromosome as self at the noncanonical sites, thereby preventing lethal dsDNA breaks. This study provides a fundamental understanding of how bacteria exploit an existing defense system to gain fitness advantage during a host-parasite coevolutionary ``arms race.''