868 resultados para Discriminative avoidance task
Resumo:
BACKGROUND AND OBJECTIVES Quantitative sensory testing (QST) is widely used to investigate peripheral and central sensitization. However, the comparative performance of different QST for diagnostic or prognostic purposes is unclear. We explored the discriminative ability of different quantitative sensory tests in distinguishing between patients with chronic neck pain and pain-free control subjects and ranked these tests according to the extent of their association with pain hypersensitivity. METHODS We performed a case-control study in 40 patients and 300 control subjects. Twenty-six tests, including different modalities of pressure, heat, cold, and electrical stimulation, were used. As measures of discrimination, we estimated receiver operating characteristic curves and likelihood ratios. RESULTS The following quantitative sensory tests displayed the best discriminative value: (1) pressure pain threshold at the site of the most severe neck pain (fitted area under the receiver operating characteristic curve, 0.92), (2) reflex threshold to single electrical stimulation (0.90), (3) pain threshold to single electrical stimulation (0.89), (4) pain threshold to repeated electrical stimulation (0.87), and (5) pressure pain tolerance threshold at the site of the most severe neck pain (0.86). Only the first 3 could be used for both ruling in and out pain hypersensitivity. CONCLUSIONS Pressure stimulation at the site of the most severe pain and parameters of electrical stimulation were the most appropriate QST to distinguish between patients with chronic neck pain and asymptomatic control subjects. These findings may be used to select the tests in future diagnostic and longitudinal prognostic studies on patients with neck pain and to optimize the assessment of localized and spreading sensitization in chronic pain patients.
Resumo:
Objective Research on the strength model of self-regulation is burgeoning, but little empirical work has focused on the link between distinct types of daily goal pursuit and the depletion of self-regulatory resources. The authors conducted two studies on the link between avoidance goals and resource depletion. Method Study 1 (283 [228 female] Caucasians, ages 18–51) investigated the concurrent and longitudinal relations between avoidance goals and resource depletion over a 1-month period. Study 2 (132 [93 female] Caucasians, ages 18–49) investigated the concurrent and longitudinal relations between avoidance goals and resource depletion over a 1-month period and explored resource depletion as a mediator of the avoidance goal to subjective well-being relation. Results Studies 1 and 2 documented both a concurrent and a longitudinal negative relationship between avoidance goals and self-regulatory resources, and Study 2 additionally showed that self-regulatory resources mediate the negative link between avoidance goals and subjective well-being. Ancillary analyses demonstrated that the results observed in the two studies were independent of neuroticism. Conclusions These findings advance knowledge in both the resource depletion and avoidance goal literatures, and bolster the view that avoidance goal pursuit over time represents a self-regulatory vulnerability.
Resumo:
We investigated the role of horizontal body motion on the processing of numbers. We hypothesized that leftward self-motion leads to shifts in spatial attention and therefore facilitates the processing of small numbers, and vice versa, we expected that rightward self-motion facilitates the processing of large numbers. Participants were displaced by means of a motion platform during a parity judgment task. We found a systematic influence of self-motion direction on number processing, suggesting that the processing of numbers is intertwined with the processing of self-motion perception. The results differed from known spatial numerical compatibility effects in that self-motion exerted a differential influence on inner and outer numbers of the given interval. The results highlight the involvement of sensory body motion information in higher-order spatial cognition.
Resumo:
When switching tasks, if stimuli are presented that contain features that cue two of the tasks in the set (i.e., bivalent stimuli), performance slowing is observed on all tasks. This generalized slowing extends to tasks in the set which have no features in common with the bivalent stimulus and is referred to as the bivalency effect. In previous work, the bivalency effect was invoked by presenting occasionally occurring bivalent stimuli; therefore, the possibility that the generalized slowing is simply due to surprise (as opposed to bivalency) has not yet been discounted. This question was addressed in two task switching experiments where the occasionally occurring stimuli were either bivalent (bivalent version) or merely surprising (surprising version). The results confirmed that the generalized slowing was much greater in the bivalent version of both experiments, demonstrating that the magnitude of this effect is greater than can be accounted for by simple surprise. This set of results confirms that slowing task execution when encountering bivalent stimuli may be fundamental for efficient task switching, as adaptive tuning of response style may serve to prepare the cognitive system for possible future high conflict trials.
Resumo:
The purpose of this study was to investigate the role of the fronto–striatal system for implicit task sequence learning. We tested performance of patients with compromised functioning of the fronto–striatal loops, that is, patients with Parkinson's disease and patients with lesions in the ventromedial or dorsolateral prefrontal cortex. We also tested amnesic patients with lesions either to the basal forebrain/orbitofrontal cortex or to thalamic/medio-temporal regions. We used a task sequence learning paradigm involving the presentation of a sequence of categorical binary-choice decision tasks. After several blocks of training, the sequence, hidden in the order of tasks, was replaced by a pseudo-random sequence. Learning (i.e., sensitivity to the ordering) was assessed by measuring whether this change disrupted performance. Although all the patients were able to perform the decision tasks quite easily, those with lesions to the fronto–striatal loops (i.e., patients with Parkinson's disease, with lesions in the ventromedial or dorsolateral prefrontal cortex and those amnesic patients with lesions to the basal forebrain/orbitofrontal cortex) did not show any evidence of implicit task sequence learning. In contrast, those amnesic patients with lesions to thalamic/medio-temporal regions showed intact sequence learning. Together, these results indicate that the integrity of the fronto–striatal system is a prerequisite for implicit task sequence learning.
Resumo:
The purpose of the present study was to investigate whether amnesic patients show a bivalency effect. The bivalency effect refers to the performance slowing that occurs when switching tasks and bivalent stimuli appear occasionally among univalent stimuli. According to the episodic context binding account, bivalent stimuli create a conflict-loaded context that is re-activated on subsequent trials and thus it is assumed that it depends on memory binding processes. Given the profound memory deficit in amnesia, we hypothesized that the bivalency effect would be largely reduced in amnesic patients. We tested sixteen severely amnesic patients and a control group with a paradigm requiring predictable alternations between three simple cognitive tasks, with bivalent stimuli occasionally occurring on one of these tasks. The results showed the typical bivalency effect for the control group, that is, a generalized slowing for each task. In contrast, for amnesic patients, only a short-lived slowing was present on the task that followed immediately after a bivalent stimulus, indicating that the binding between tasks and context was impaired in amnesic patients.