892 resultados para Dimensional Modeling and Virtual Reality
Resumo:
Child molesters (n=13) and sexually non-deviant subjects (n=29) were immersed with virtual characters depicting relevant sexual features while their sexual arousal and gaze behaviour were assessed to characterize their sexual preferences and intentional dynamics. Sexual arousal was measured using circumferential penile plethysmography (PPG). Gaze behaviour dynamics was derived from average gaze radial angular deviation (GRAD) and GRAD coefficient of variation (GRADCV). Results show distinct sexual arousal profiles according to sexual preferences and point towards the existence of specific gaze behaviour dynamics guided by sexual intentions. Theoretical interpretations are based on the ecological psychology of J.J. Gibson and the integrated theory of sexual offending (Ward, 2009; Ward & Beech, 2006). Theoretical underpinnings coming from these approaches are advocated as being especially well suited to explain how virtual reality can help probing into child molesters’ phenomenology as lived from the first-person stance.
Case study of the use of remotely sensed data for modeling flood inundation on the river Severn, UK.
Resumo:
A methodology for using remotely sensed data to both generate and evaluate a hydraulic model of floodplain inundation is presented for a rural case study in the United Kingdom: Upton-upon-Severn. Remotely sensed data have been processed and assembled to provide an excellent test data set for both model construction and validation. In order to assess the usefulness of the data and the issues encountered in their use, two models for floodplain inundation were constructed: one based on an industry standard one-dimensional approach and the other based on a simple two-dimensional approach. The results and their implications for the future use of remotely sensed data for predicting flood inundation are discussed. Key conclusions for the use of remotely sensed data are that care must be taken to integrate different data sources for both model construction and validation and that improvements in ground height data shift the focus in terms of model uncertainties to other sources such as boundary conditions. The differences between the two models are found to be of minor significance.
Resumo:
In an immersive virtual reality environment, subjects fail to notice when a scene expands or contracts around them, despite correct and consistent information from binocular stereopsis and motion parallax, resulting in gross failures of size constancy (A. Glennerster, L. Tcheang, S. J. Gilson, A. W. Fitzgibbon, & A. J. Parker, 2006). We determined whether the integration of stereopsis/motion parallax cues with texture-based cues could be modified through feedback. Subjects compared the size of two objects, each visible when the room was of a different size. As the subject walked, the room expanded or contracted, although subjects failed to notice any change. Subjects were given feedback about the accuracy of their size judgments, where the “correct” size setting was defined either by texture-based cues or (in a separate experiment) by stereo/motion parallax cues. Because of feedback, observers were able to adjust responses such that fewer errors were made. For texture-based feedback, the pattern of responses was consistent with observers weighting texture cues more heavily. However, for stereo/motion parallax feedback, performance in many conditions became worse such that, paradoxically, biases moved away from the point reinforced by the feedback. This can be explained by assuming that subjects remap the relationship between stereo/motion parallax cues and perceived size or that they develop strategies to change their criterion for a size match on different trials. In either case, subjects appear not to have direct access to stereo/motion parallax cues.
Resumo:
Polycondensation of 2,6-dihydroxynaphthalene with 4,4'-bis(4"-fluorobenzoyl)biphenyl affords a novel, semicrystalline poly(ether ketone) with a melting point of 406 degreesC and glass transition temperature (onset) of 168 degreesC. Molecular modeling and diffraction-simulation studies of this polymer, coupled with data from the single-crystal structure of an oligomer model, have enabled the crystal and molecular structure of the polymer to be determined from X-ray powder data. This structure-the first for any naphthalene-containing poly(ether ketone)-is fully ordered, in monoclinic space group P2(1)/b, with two chains per unit cell. Rietveld refinement against the experimental powder data gave a final agreement factor (R-wp) of 6.7%.
Resumo:
An increasing number of neuroscience experiments are using virtual reality to provide a more immersive and less artificial experimental environment. This is particularly useful to navigation and three-dimensional scene perception experiments. Such experiments require accurate real-time tracking of the observer's head in order to render the virtual scene. Here, we present data on the accuracy of a commonly used six degrees of freedom tracker (Intersense IS900) when it is moved in ways typical of virtual reality applications. We compared the reported location of the tracker with its location computed by an optical tracking method. When the tracker was stationary, the root mean square error in spatial accuracy was 0.64 mm. However, we found that errors increased over ten-fold (up to 17 mm) when the tracker moved at speeds common in virtual reality applications. We demonstrate that the errors we report here are predominantly due to inaccuracies of the IS900 system rather than the optical tracking against which it was compared. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates the use of really simple syndication (RSS) to dynamically change virtual environments. The case study presented here uses meteorological data downloaded from the Internet in the form of an RSS feed, this data is used to simulate current weather patterns in a virtual environment. The downloaded data is aggregated and interpreted in conjunction with a configuration file, used to associate relevant weather information to the rendering engine. The engine is able to animate a wide range of basic weather patterns. Virtual reality is a way of immersing a user into a different environment, the amount of immersion the user experiences is important. Collaborative virtual reality will benefit from this work by gaining a simple way to incorporate up-to-date RSS feed data into any environment scenario. Instead of simulating weather conditions in training scenarios, actual weather conditions can be incorporated, improving the scenario and immersion.
Resumo:
This paper addresses the crucial problem of wayfinding assistance in the Virtual Environments (VEs). A number of navigation aids such as maps, agents, trails and acoustic landmarks are available to support the user for navigation in VEs, however it is evident that most of the aids are visually dominated. This work-in-progress describes a sound based approach that intends to assist the task of 'route decision' during navigation in a VE using music. Furthermore, with use of musical sounds it aims to reduce the cognitive load associated with other visually as well as physically dominated tasks. To achieve these goals, the approach exploits the benefits provided by music to ease and enhance the task of wayfinding, whilst making the user experience in the VE smooth and enjoyable.
Resumo:
Ever since man invented writing he has used text to store and distribute his thoughts. With the advent of computers and the Internet the delivery of these messages has become almost instant. Textual conversations can now be had regardless of location or distance. Advances in computational power for 3D graphics are enabling Virtual Environments(VE) within which users can become increasingly more immersed. By opening these environments to other users such as initially through sharing these text conversations channels, we aim to extend the immersed experience into an online virtual community. This paper examines work that brings textual communications into the VE, enabling interaction between the real and virtual worlds.
Resumo:
As Virtual Reality pushes the boundaries of the human computer interface new ways of interaction are emerging. One such technology is the integration of haptic interfaces (force-feedback devices) into virtual environments. This modality offers an improved sense of immersion to that achieved when relying only on audio and visual modalities. The paper introduces some of the technical obstacles such as latency and network traffic that need to be overcome for maintaining a high degree of immersion during haptic tasks. The paper describes the advantages of integrating haptic feedback into systems, and presents some of the technical issues inherent in a networked haptic virtual environment. A generic control interface has been developed to seamlessly mesh with existing networked VR development libraries.
Resumo:
Virtual Reality (VR) has been used in a variety of forms to assist in the treatment of a wide range of psychological illness. VR can also fulfil the need that psychologists have for safe environments in which to conduct experiments. Currently the main barrier against using this technology is the complexity in developing applications. This paper presents two different co-operative psychological applications which have been developed using a single framework. These applications require different levels of co-operation between the users and clients, ranging from full psychologist involvement to their minimal intervention. This paper will also discuss our approach to developing these different environments and our experiences to date in utilising these environments.
Resumo:
It is reported in the literature that distances from the observer are underestimated more in virtual environments (VEs) than in physical world conditions. On the other hand estimation of size in VEs is quite accurate and follows a size-constancy law when rich cues are present. This study investigates how estimation of distance in a CAVETM environment is affected by poor and rich cue conditions, subject experience, and environmental learning when the position of the objects is estimated using an experimental paradigm that exploits size constancy. A group of 18 healthy participants was asked to move a virtual sphere controlled using the wand joystick to the position where they thought a previously-displayed virtual cube (stimulus) had appeared. Real-size physical models of the virtual objects were also presented to the participants as a reference of real physical distance during the trials. An accurate estimation of distance implied that the participants assessed the relative size of sphere and cube correctly. The cube appeared at depths between 0.6 m and 3 m, measured along the depth direction of the CAVE. The task was carried out in two environments: a poor cue one with limited background cues, and a rich cue one with textured background surfaces. It was found that distances were underestimated in both poor and rich cue conditions, with greater underestimation in the poor cue environment. The analysis also indicated that factors such as subject experience and environmental learning were not influential. However, least square fitting of Stevens’ power law indicated a high degree of accuracy during the estimation of object locations. This accuracy was higher than in other studies which were not based on a size-estimation paradigm. Thus as indirect result, this study appears to show that accuracy when estimating egocentric distances may be increased using an experimental method that provides information on the relative size of the objects used.
Resumo:
Retinal blurring resulting from the human eye's depth of focus has been shown to assist visual perception. Infinite focal depth within stereoscopically displayed virtual environments may cause undesirable effects, for instance, objects positioned at a distance in front of or behind the observer's fixation point will be perceived in sharp focus with large disparities thereby causing diplopia. Although published research on incorporation of synthetically generated Depth of Field (DoF) suggests that this might act as an enhancement to perceived image quality, no quantitative testimonies of perceptional performance gains exist. This may be due to the difficulty of dynamic generation of synthetic DoF where focal distance is actively linked to fixation distance. In this paper, such a system is described. A desktop stereographic display is used to project a virtual scene in which synthetically generated DoF is actively controlled from vergence-derived distance. A performance evaluation experiment on this system which involved subjects carrying out observations in a spatially complex virtual environment was undertaken. The virtual environment consisted of components interconnected by pipes on a distractive background. The subject was tasked with making an observation based on the connectivity of the components. The effects of focal depth variation in static and actively controlled focal distance conditions were investigated. The results and analysis are presented which show that performance gains may be achieved by addition of synthetic DoF. The merits of the application of synthetic DoF are discussed.
Resumo:
A visual telepresence system has been developed at the University of Reading which utilizes eye tracing to adjust the horizontal orientation of the cameras and display system according to the convergence state of the operator's eyes. Slaving the cameras to the operator's direction of gaze enables the object of interest to be centered on the displays. The advantage of this is that the camera field of view may be decreased to maximize the achievable depth resolution. An active camera system requires an active display system if appropriate binocular cues are to be preserved. For some applications, which critically depend upon the veridical perception of the object's location and dimensions, it is imperative that the contribution of binocular cues to these judgements be ascertained because they are directly influenced by camera and display geometry. Using the active telepresence system, we investigated the contribution of ocular convergence information to judgements of size, distance and shape. Participants performed an open- loop reach and grasp of the virtual object under reduced cue conditions where the orientation of the cameras and the displays were either matched or unmatched. Inappropriate convergence information produced weak perceptual distortions and caused problems in fusing the images.
Resumo:
Use of new technologies, such as virtual reality (VR), is important to corporations, yet understanding of their successful implementation is insuf. ciently developed. In this paper a case study is used to analyse the introduction of VR use in a British housebuilding company. Although the implementation was not successful in the manner initially anticipated, the study provides insight into the process of change, the constraints that inhibit implementation and the relationship between new technology and work organization. Comparison is made with the early use of CAD and similarities and differences between empirical . ndings of the case study and the previous literature are discussed.