921 resultados para Digital aerial images
Resumo:
An interactive installation with full body interface, digital projection, multi-touch sensitive screen surfaces, interactive 3D gaming software, motorised dioramas, 4.1 spatial sound & new furniture forms - investigating the cultural dimensions of sustainability through the lens of 'time'. “Time is change, time is finitude. Humans are a finite species. Every decision we make today brings that end closer, or alternatively pushes it further away. Nothing can be neutral”. Tony Fry DETAILS: Finitude (Mallee:Time) is a major new media/sculptural hybrid work premiered in 2011 in version 1 at the Ka-rama Motel for the Mildura Palimpsest #8 ('Collaborators and Saboteurs'). Each participant/viewer lies comfortably on their back on the double bed of Room 22. Directly above them, supported by a wooden structure, not unlike a house frame, is a semi-transparent Perspex screen that displays projected 3D imagery and is simultaneously sensitive to the lightest of finger touches. Depending upon the ever changing qualities of the projected image on this screen the participant can see through its surface to a series of physical dioramas suspended above, lit by subtle LED spotlighting. This diorama consists of a slowly rotating series of physical environments, which also include several animatronic components, allowing the realtime composition of whimsical ‘landscapes’ of both 'real' and 'virtual' media. Through subtle, non-didactic touch-sensitive interactivity the participant then has influence over both the 3D graphic imagery, the physical movements of the diorama and the 4.1 immersive soundscape, creating an uncanny blend of physical and virtual media. Five speakers positioned around the room deliver a rich interactive soundscape that responds both audibly and physically to interactions. VERSION 1, CONTEXT/THEORY: Finitude (Mallee: Time) is Version 1 of a series of presentations during 2012-14. This version has been inspired through a series of recent visits and residencies in the SW Victoria Mallee country. Further drawing on recent writings by post colonial author Paul Carter, the work is envisaged as an evolving ‘personal topography’ of place-discovery. By contrasting and melding readily available generalisations of the Mallee regions’ rational surfaces, climatic maps and ecological systems with what Carter calls “a fine capillary system of interconnected words, places, memories and sensations” generated through my own idiosyncratic research processes, Finitude (Mallee Time) invokes a “dark writing” of place through outside eyes - an approach that avoids concentration upon what 'everyone else knows', to instead imagine and develop a sense how things might be. This basis in re-imagining and re-invention becomes the vehicle for the work’s more fundamental intention - as a meditative re-imagination of 'time' (and region) as finite resources: Towards this end, every object, process and idea in the work is re-thought as having its own ‘time component’ or ‘residue’ that becomes deposited into our 'collective future'. Thought this way Finitude (Mallee Time) suggests the poverty of predominant images of time as ‘mechanism’ to instead envisage time as a plastic cyclical medium that we can each choose to ‘give to’ or ‘take away from’ our future. Put another way - time has become finitude.
Resumo:
The REMNANT/EMERGENCY Artlab was funded by the Australia Council InterArts ArtLab Program in 2010 and involves 22 months of rigorous research and experimentation in several countries. The process will be developed between a core transdisciplinary team of practicing media artists, designers and engineers where possible working in consultation and collaboration with local creatives at each venue. Our team asserts that today’s environmental crisis is underpinned by a deep cultural crisis - and so to get our ‘house in order’ we urgently need to create better and more powerful ‘images’ of what a ‘citizen-led’, sustainable world might be. This ArtLab’s core aim is therefore to begin to understand how to develop and create such ‘powerful images’.
Resumo:
Thermal-infrared images have superior statistical properties compared with visible-spectrum images in many low-light or no-light scenarios. However, a detailed understanding of feature detector performance in the thermal modality lags behind that of the visible modality. To address this, the first comprehensive study on feature detector performance on thermal-infrared images is conducted. A dataset is presented which explores a total of ten different environments with a range of statistical properties. An investigation is conducted into the effects of several digital and physical image transformations on detector repeatability in these environments. The effect of non-uniformity noise, unique to the thermal modality, is analyzed. The accumulation of sensor non-uniformities beyond the minimum possible level was found to have only a small negative effect. A limiting of feature counts was found to improve the repeatability performance of several detectors. Most other image transformations had predictable effects on feature stability. The best-performing detector varied considerably depending on the nature of the scene and the test.
Resumo:
Recent algorithms for monocular motion capture (MoCap) estimate weak-perspective camera matrices between images using a small subset of approximately-rigid points on the human body (i.e. the torso and hip). A problem with this approach, however, is that these points are often close to coplanar, causing canonical linear factorisation algorithms for rigid structure from motion (SFM) to become extremely sensitive to noise. In this paper, we propose an alternative solution to weak-perspective SFM based on a convex relaxation of graph rigidity. We demonstrate the success of our algorithm on both synthetic and real world data, allowing for much improved solutions to marker less MoCap problems on human bodies. Finally, we propose an approach to solve the two-fold ambiguity over bone direction using a k-nearest neighbour kernel density estimator.
Resumo:
Google, Facebook, Twitter, LinkedIn, etc. are some of the prominent large-scale digital service providers that are having tremendous impact on societies, corporations and individuals. However, despite the rapid uptake and their obvious influence on the behavior of individuals and the business models and networks of organizations, we still lack a deeper, theory-guided understanding of the related phenomenon. We use Teece’s notion of complementary assets and extend it towards ‘digital complementary assets’ (DCA) in an attempt to provide such a theory-guided understanding of these digital services. Building on Teece’s theory, we make three contributions. First, we offer a new conceptualization of digital complementary assets in the form of digital public goods and digital public assets. Second, we differentiate three models for how organizations can engage with such digital complementary assets. Third, user-base is found to be a critical factor when considering appropriability.
Resumo:
The exhibition consists of a series of 9 large-scale cotton rag prints, printed from digital files, and a sound and picture animation on DVD composed of drawings, sound, analogue and digital photographs, and Super 8 footage. The exhibition represents the artist’s experience of Singapore during her residency. Source imagery was gathered from photographs taken at the Bukit Brown abandoned Chinese Cemetery in Singapore, and Australian native gardens in Parkville Melbourne. Historical sources include re-photographed Singapore 19th and early 20th century postcard images. The works use analogue, hand-drawn and digital imaging, still and animated, to explore the digital interface’s ability to combine mixed media. This practice stems from the digital imaging practice of layering, using various media editing software. The work is innovative in that it stretches the idea of the layer composition in a single image by setting each layer into motion using animation techniques. This creates a multitude of permutations and combinations as the two layers move in different rhythmic patterns. The work also represents an innovative collaboration between the photographic practitioner and a sound composer, Duncan King-Smith, who designed sound for the animation based on concepts of trance, repetition and abstraction. As part of the Art ConneXions program, the work travelled to numerous international venues including: Space 217 Singapore, RMIT Gallery Melbourne, National Museum Jakarta, Vietnam Fine Arts Museum Hanoi, and ifa (Institut fur Auslandsbeziehungen) Gallery in both Stuttgart and Berlin.
Resumo:
Virtual environments can provide, through digital games and online social interfaces, extremely exciting forms of interactive entertainment. Because of their capability in displaying and manipulating information in natural and intuitive ways, such environments have found extensive applications in decision support, education and training in the health and science domains amongst others. Currently, the burden of validating both the interactive functionality and visual consistency of a virtual environment content is entirely carried out by developers and play-testers. While considerable research has been conducted in assisting the design of virtual world content and mechanics, to date, only limited contributions have been made regarding the automatic testing of the underpinning graphics software and hardware. The aim of this thesis is to determine whether the correctness of the images generated by a virtual environment can be quantitatively defined, and automatically measured, in order to facilitate the validation of the content. In an attempt to provide an environment-independent definition of visual consistency, a number of classification approaches were developed. First, a novel model-based object description was proposed in order to enable reasoning about the color and geometry change of virtual entities during a play-session. From such an analysis, two view-based connectionist approaches were developed to map from geometry and color spaces to a single, environment-independent, geometric transformation space; we used such a mapping to predict the correct visualization of the scene. Finally, an appearance-based aliasing detector was developed to show how incorrectness too, can be quantified for debugging purposes. Since computer games heavily rely on the use of highly complex and interactive virtual worlds, they provide an excellent test bed against which to develop, calibrate and validate our techniques. Experiments were conducted on a game engine and other virtual worlds prototypes to determine the applicability and effectiveness of our algorithms. The results show that quantifying visual correctness in virtual scenes is a feasible enterprise, and that effective automatic bug detection can be performed through the techniques we have developed. We expect these techniques to find application in large 3D games and virtual world studios that require a scalable solution to testing their virtual world software and digital content.
Resumo:
Everything (2008) is a looped 3 channel digital video (extracted from a 3D computer animation) that appropriates a range of media including photography, drawing, painting, and pre-shot video. The work departs from traditional time-based video which is generally based on a recording of an external event. Instead, “Everything” constructs an event and space more like a painting or drawing might. The works combines constructed events (including space, combinations of objects, and aesthetic relationship of forms) with pre-recorded video footage and pre-made paintings and drawings. The result is a montage of objects, images – both still and moving – and abstracted ‘painterly’ gestures. This technique creates a complex temporal displacement. 'Past' refers to pre-recorded media such as painting and photography, and 'future' refers to a possible virtual space not in the present, that these objects may occupy together. Through this simultaneity between the real and the virtual, the work comments on a disembodied sense of space and time, while also puncturing the virtual with a sense of materiality through the tactility of drawing and painting forms and processes. In so doing, te work challenges the perspectival Cartesian space synonymous with the virtual. In this work the disembodied wandering virtual eye is met with an uncanny combination of scenes, where scale and the relationships between objects are disrupted and changed. Everything is one of the first international examples of 3D animation technology being utilised in contemporary art. The work won the inaugural $75,000 Premier of Queensland National New Media Art Award and was subsequently acquired by the Queensland Art Gallery. The work has been exhibited and reviewed nationally and internationally.
Resumo:
In most of the digital image watermarking schemes, it becomes a common practice to address security in terms of robustness, which is basically a norm in cryptography. Such consideration in developing and evaluation of a watermarking scheme may severely affect the performance and render the scheme ultimately unusable. This paper provides an explicit theoretical analysis towards watermarking security and robustness in figuring out the exact problem status from the literature. With the necessary hypotheses and analyses from technical perspective, we demonstrate the fundamental realization of the problem. Finally, some necessary recommendations are made for complete assessment of watermarking security and robustness.
Resumo:
Local governments struggle to engage time poor and seemingly apathetic citizens, as well as the city’s young digital natives, the digital locals. This project aims at providing a lightweight, technological contribution towards removing the hierarchy between those who build the city and those who use it. We aim to narrow this gap by enhancing people’s experience of physical spaces with digital, civic technologies that are directly accessible within that space. This paper presents the findings of a design trial allowing users to interact with a public screen via their mobile phones. The screen facilitated a feedback platform about a concrete urban planning project by promoting specific questions and encouraging direct, in-situ, real-time responses via SMS and twitter. This new mechanism offers additional benefits for civic participation as it gives voice to residents who otherwise would not be heard. It also promotes a positive attitude towards local governments and gathers information different from more traditional public engagement tools.
Resumo:
In 2009, QUT’s Office of Research and the Institute for Adult Learning Singapore funded a six-month pilot project that represented the first stage of a larger international comparative study. The study is the first of its kind to investigate to what extent and how digital content workers’ learning needs are being met by adult education and training in Australia and Singapore. The pilot project involved consolidating key theoretical literature, studies, policies, programs and statistical data relevant to the digital content industries in Australia and Singapore. This had not been done before, and represented new knowledge generation. Digital content workers include professionals within and beyond the creative industries as follows: Visual effects and animation (including virtual reality and 3D products); Interactive multimedia (e.g. websites, CD-ROMs) and software development; Computer and online games; and Digital film & TV production and film & TV post-production. In the last decade, the digital content industries have been recognised as an industry sector of strong and increasing significance. The project compared Australia and Singapore on aspects of the digital content industries’ labour market, skill requirements, human capital challenges, the role of adult education in building a workforce for the digital content industries, and innovation policies. The consolidated report generated from the project formed the basis of the proposal for an ARC Linkage Project application submitted in the May 2010 round.
Resumo:
Finite element analyses of the human body in seated postures requires digital models capable of providing accurate and precise prediction of the tissue-level response of the body in the seated posture. To achieve such models, the human anatomy must be represented with high fidelity. This information can readily be defined using medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Current practices for constructing digital human models, based on the magnetic resonance (MR) images, in a lying down (supine) posture have reduced the error in the geometric representation of human anatomy relative to reconstructions based on data from cadaveric studies. Nonetheless, the significant differences between seated and supine postures in segment orientation, soft-tissue deformation and soft tissue strain create a need for data obtained in postures more similar to the application posture. In this study, we present a novel method for creating digital human models based on seated MR data. An adult-male volunteer was scanned in a simulated driving posture using a FONAR 0.6T upright MRI scanner with a T1 scanning protocol. To compensate for unavoidable image distortion near the edges of the study, images of the same anatomical structures were obtained in transverse and sagittal planes. Combinations of transverse and sagittal images were used to reconstruct the major anatomical features from the buttocks through the knees, including bone, muscle and fat tissue perimeters, using Solidworks® software. For each MR image, B-splines were created as contours for the anatomical structures of interest, and LOFT commands were used to interpolate between the generated Bsplines. The reconstruction of the pelvis, from MR data, was enhanced by the use of a template model generated in previous work CT images. A non-rigid registration algorithm was used to fit the pelvis template into the MR data. Additionally, MR image processing was conducted to both the left and the right sides of the model due to the intended asymmetric posture of the volunteer during the MR measurements. The presented subject-specific, three-dimensional model of the buttocks and thighs will add value to optimisation cycles in automotive seat development when used in simulating human interaction with automotive seats.
Resumo:
Virtual prototyping emerges as a new technology to replace existing physical prototypes for product evaluation, which are costly and time consuming to manufacture. Virtualization technology allows engineers and ergonomists to perform virtual builds and different ergonomic analyses on a product. Digital Human Modelling (DHM) software packages such as Siemens Jack, often integrate with CAD systems to provide a virtual environment which allows investigation of operator and product compatibility. Although the integration between DHM and CAD systems allows for the ergonomic analysis of anthropometric design, human musculoskeletal, multi-body modelling software packages such as the AnyBody Modelling System (AMS) are required to support physiologic design. They provide muscular force analysis, estimate human musculoskeletal strain and help address human comfort assessment. However, the independent characteristics of the modelling systems Jack and AMS constrain engineers and ergonomists in conducting a complete ergonomic analysis. AMS is a stand alone programming system without a capability to integrate into CAD environments. Jack is providing CAD integrated human-in-the-loop capability, but without considering musculoskeletal activity. Consequently, engineers and ergonomists need to perform many redundant tasks during product and process design. Besides, the existing biomechanical model in AMS uses a simplified estimation of body proportions, based on a segment mass ratio derived scaling approach. This is insufficient to represent user populations anthropometrically correct in AMS. In addition, sub-models are derived from different sources of morphologic data and are therefore anthropometrically inconsistent. Therefore, an interface between the biomechanical AMS and the virtual human model Jack was developed to integrate a musculoskeletal simulation with Jack posture modeling. This interface provides direct data exchange between the two man-models, based on a consistent data structure and common body model. The study assesses kinematic and biomechanical model characteristics of Jack and AMS, and defines an appropriate biomechanical model. The information content for interfacing the two systems is defined and a protocol is identified. The interface program is developed and implemented through Tcl and Jack-script(Python), and interacts with the AMS console application to operate AMS procedures.
Resumo:
Finite Element Modeling (FEM) has become a vital tool in the automotive design and development processes. FEM of the human body is a technique capable of estimating parameters that are difficult to measure in experimental studies with the human body segments being modeled as complex and dynamic entities. Several studies have been dedicated to attain close-to-real FEMs of the human body (Pankoke and Siefert 2007; Amann, Huschenbeth et al. 2009; ESI 2010). The aim of this paper is to identify and appraise the state of-the art models of the human body which incorporate detailed pelvis and/or lower extremity models. Six databases and search engines were used to obtain literature, and the search was limited to studies published in English since 2000. The initial search results identified 636 pelvis-related papers, 834 buttocks-related papers, 505 thigh-related papers, 927 femur-related papers, 2039 knee-related papers, 655 shank-related papers, 292 tibia-related papers, 110 fibula-related papers, 644 ankle related papers, and 5660 foot-related papers. A refined search returned 100 pelvis-related papers, 45 buttocks related papers, 65 thigh-related papers, 162 femur-related papers, 195 kneerelated papers, 37 shank-related papers, 80 tibia-related papers, 30 fibula-related papers and 102 ankle-related papers and 246 foot-related papers. The refined literature list was further restricted by appraisal against a modified LOW appraisal criteria. Studies with unclear methodologies, with a focus on populations with pathology or with sport related dynamic motion modeling were excluded. The final literature list included fifteen models and each was assessed against the percentile the model represents, the gender the model was based on, the human body segment/segments included in the model, the sample size used to develop the model, the source of geometric/anthropometric values used to develop the model, the posture the model represents and the finite element solver used for the model. The results of this literature review provide indication of bias in the available models towards 50th percentile male modeling with a notable concentration on the pelvis, femur and buttocks segments.
Resumo:
In this paper, a hardware-based path planning architecture for unmanned aerial vehicle (UAV) adaptation is proposed. The architecture aims to provide UAVs with higher autonomy using an application specific evolutionary algorithm (EA) implemented entirely on a field programmable gate array (FPGA) chip. The physical attributes of an FPGA chip, being compact in size and low in power consumption, compliments it to be an ideal platform for UAV applications. The design, which is implemented entirely in hardware, consists of EA modules, population storage resources, and three-dimensional terrain information necessary to the path planning process, subject to constraints accounted for separately via UAV, environment and mission profiles. The architecture has been successfully synthesised for a target Xilinx Virtex-4 FPGA platform with 32% logic slices utilisation. Results obtained from case studies for a small UAV helicopter with environment derived from LIDAR (Light Detection and Ranging) data verify the effectiveness of the proposed FPGA-based path planner, and demonstrate convergence at rates above the typical 10 Hz update frequency of an autopilot system.