967 resultados para Deletion mutants
Resumo:
The insertion of a DNA copy of its RNA genome into a chromosome of the host cell is mediated by the viral integrase with the help of mostly uncharacterized cellular cofactors. We have recently described that the transcriptional co-activator LEDGF/p75 strongly interacts with HIV-1 integrase. Here we show that interaction of HIV-1 integrase with LEDGF/p75 is important for viral replication. Using multiple approaches including two-hybrid interaction studies, random and directed mutagenesis, we could demonstrate that HIV-1 virus harboring a single mutation that disrupts integrase-LEDGF/p75 interaction, resulted in defective HIV-1 replication. Furthermore, we found that LEDGF/p75 tethers HIV-1 integrase to chromosomes and that this interaction may be important for the integration process and the replication of HIV-1.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Chromosome microarray analysis is a powerful diagnostic tool and is being used as a first-line approach to detect chromosome imbalances associated with intellectual disability, dysmorphic features and congenital abnormalities. This test enables the identification of new copy number variants (CNVs) and their association with new microdeletion/microduplication syndromes in patients previously without diagnosis. We report the case of a 7 year-old female with moderate intellectual disability, severe speech delay and auto and hetero aggressivity with a previous 45,XX,der(13;14)mat karyotype performed at a younger age. Affymetrix CytoScan 750K chromosome microarray analysis was performed detecting a 1.77 Mb deletion at 3p26.3, encompassing 2 OMIM genes, CNTN6 and CNTN4. These genes play an important role in the formation, maintenance, and plasticity of functional neuronal networks. Deletions or mutations in CNTN4 gene have been implicated in intellectual disability and learning disabilities. Disruptions or deletions in the CNTN6 gene have been associated with development delay and other neurodevelopmental disorders. The haploinsufficiency of these genes has been suggested to participate to the typical clinical features of 3p deletion syndrome. Nevertheless inheritance from a healthy parent has been reported, suggesting incomplete penetrance and variable phenotype for this CNV. We compare our patient with other similar reported cases, adding additional value to the phenotype-genotype correlation of deletions in this region.
Resumo:
Genome editing is becoming an important biotechnological tool for gene function analysis and crop improvement, being the CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat-CRISPR associated protein 9) system the most widely used. The natural CRISPR/Cas9 system has been reduced to two components: a single-guide RNA (sgRNA) for target recognition via RNA-DNA base pairing, which is commonly expressed using a promoter for small-RNAs (U6 promoter), and the Cas9 endonuclease for DNA cleavage (1). To validate the CRISPR/Cas9 system in strawberry plants, we designed two sgRNAs directed against the floral homeotic gene APETALA3 (sgRNA-AP3#1 and sgRNA-AP3#2). This gene was selected because ap3 mutations induce clear developmental phenotypes in which petals and stamens are missing or partially converted to sepals and carpels respectively (2). In this work, we used two different U6 promoters to drive the sgRNA-AP3s expression: AtU6-26 from Arabidopsis (4), and a U6 promoter from Fragaria vesca (FvU6) (this work). We also tested two different coding sequences of Cas9: a human- (hSpCas9) (3) and a plant-codon optimized (pSpCas9) (this work). Transient expression experiments using both CRISPR/Cas9 systems (AtU6-26:sgRNA-AP3#1_35S:hSpCas9_AtU6-26:sgRNA-AP3#2 and FvU6:sgRNA-AP3#1_35S:pSpCas9_FvU6:sgRNA-AP3#2) were performed infiltrating Agrobacterium tumefaciens into F. vesca fruits. PCR amplification and sequencing analyses across the target sites showed a deletion of 188-189 bp corresponding to the region comprised between the two cutting sites of Cas9, confirming that the CRISPR/Cas9 system is functional in F. vesca. Remarkably, the two systems showed different mutagenic efficiency that could be related to differences in expression of the U6 promoters as well as differences in the Cas9 transcripts stability and translation. Stable transformants for both F. vesca (2n) and Fragaria X anannassa (8n) are currently being established to test whether is possible to obtain heritable homozygous mutants derived from CRISPR/Cas9 strategies in strawberry. Thus, our work offers a promising tool for genome editing and gene functional analysis in strawberry. This tool might represent a more efficient alternative to the sometimes inefficient RNAi silencing methods commonly used in this species.
Resumo:
Purpose: To investigate whether UL43 protein, which is highly conserved in alpha- and gamma herpes viruses, and a non-glycosylated transmembrane protein, is involved in virus entry and virus-induced cell fusion. Methods: Mutagenesis was accomplished by a markerless two-step Red recombination mutagenesis system implemented on the Herpes simplex virus 1 (HSV-1) bacterial artificial chromosome (BAC). Growth properties of HSV-1 UL43 mutants were analyzed using plaque morphology and one-step growth kinetics. SDS-PAGE and Western blot was employed to assay the synthesis of the viral glycoproteins. Virus-penetration was assayed to determine if UL43 protein is required for efficient virus entry. Results: Lack of UL43 expression resulted in significantly reduced plaque sizes of syncytial mutant viruses and inhibited cell fusion induced by gBΔ28 or gKsyn20 (p < 0.05). Deletion of UL43 did not affect overall expression levels of viral glycoproteins gB, gC, gD, and gH on HSV-1(F) BAC infected cell surfaces. Moreover, mutant viruses lacking UL43 gene exhibited slower kinetics of entry into Vero cells than the parental HSV-1(F) BAC. Conclusion: Thus, these results suggest an important role for UL43 protein in mediating virus-induced membrane fusion and efficient entry of virion into target cells.
Resumo:
Les kinases de la famille Polo (PLK) jouent un rôle majeur durant le cycle cellulaire, notamment en promouvant des processus essentiels tels que l’entrée en phase M et la sortie du cycle cellulaire. Elles sont également impliquées dans plusieurs cancers et ont un fort pouvoir tumorigène. Notre laboratoire a récemment montré que Cdc5 (la kinase PLK chez Saccharomyces cerevisiae) est également nécessaire pour l'adaptation aux dommages à l'ADN, et que la cible critique de Cdc5 au cours de ce processus pourrait être une cible peu conventionnelle localisée aux centrosomes de levures. Dans le but d’identifier ce substrat, une analyse intégrale du phosphoprotéome de PLK/Cdc5 par spectrométrie de masse devra être réalisée. Pour ce faire, un allèle CDC5 sensible à la température, c’est-à-dire une version mutante qui devient inactive à température élevée, devra être utilisée. Cet allèle devra être thermosensible à 30°C, afin de s’assurer qu’il sera le seul à être inactivé à cette température et que, par conséquent, seuls les substrats de Cdc5 seront identifiés. À cet effet, nous avons généré deux allèles cdc5 thermosensibles à 30°C : cdc5-17 et cdc5-18, puis analysé leur cycle cellulaire à 32°C. Les résultats de cette analyse ont montré que l’exposition des cellules à 32°C résulte en leur blocage en fin de mitose sous la forme bourgeonnée, témoignant d’un défaut dans la promotion de la sortie de la mitose. Ce défaut est causé par la mutation du gène CDC5 dont la protéine favorise la sortie de la mitose via deux voies : la voie du MEN (Mitotic Exit Network) et la voie du FEAR (Cdc Fourteen Early Anaphase Release). cdc5-17 et cdc5-18 représentent des outils biologiques précieux qui permettront de mieux analyser le phosphoprotéome de PLK/Cdc5 et de mener à l’identification des cibles de Cdc5 lors de la réponse d’adaptation aux dommages à l’ADN. Étant donné que l’adaptation aux dommages à l’ADN causés par des chimiothérapies représente l’un des facteurs permettant la prolifération des tumeurs cancéreuses, cette découverte serait un grand pas dans la lutte contre le cancer.
Resumo:
Melanocytes, pigment-producing cells, derive from the neural crest (NC), a population of pluripotent cells that arise from the dorsal aspect of the neural tube during embryogenesis. Many genes required for melanocyte development were identified using mouse pigmentation mutants. The deletion of the transcription factor Ets1 in mice results in hypopigmentation; nevertheless, the function of Ets1 in melanocyte development is unknown. The goal of the present study was to establish the temporal requirement and role of Ets1 in murine melanocyte development. In the mouse, Ets1 is widely expressed in developing organs and tissues, including the NC. In the chick cranial NC, Ets1 is required for the expression of Sox10, a transcription factor critical for the development of melanocytes, enteric ganglia, and other NC derivatives. Using a combination of immunofluorescence and cell survival assays Ets1 was found to be required between embryonic days 10 and 11, when it regulates NC cell and melanocyte precursor (melanoblast) survival. Given the requirement of Ets1 for Sox10 expression in the chick cranial NC, a potential interaction between these genes was investigated. Using genetic crosses, a synergistic genetic interaction between Ets1 and Sox10 in melanocyte development was found. Since Sox10 is essential for enteric ganglia formation, the importance of Ets1 on gut innervation was also examined. In mice, Ets1 deletion led to decreased gut innervation, which was exacerbated by Sox10 heterozygosity. At the molecular level, Ets1 was found to activate a Sox10 enhancer critical for Sox10 expression in melanoblasts. Furthermore, mutating Ets1 at a site I characterized in the spontaneous variable spotting mouse pigmentation mutant, led to a 2-fold decrease in enhancer activation. Overexpression and knockdown of Ets1 did not affect Sox10 expression; nonetheless, Ets1 knockdown led to a 6-fold upregulation of the transcription factor Sox9, a gene required for melanocyte and chondrocyte development, but which impairs melanocyte development when its expression is prolonged. Together, these results suggest that Ets1 is required early during melanocyte development for NC cell and melanoblast survival, possibly acting upstream of Sox10. The transcription factor Ets1 may also act indirectly in melanocyte fate specification by repressing Sox9 expression, and consequently cartilage fate.
Resumo:
Les kinases de la famille Polo (PLK) jouent un rôle majeur durant le cycle cellulaire, notamment en promouvant des processus essentiels tels que l’entrée en phase M et la sortie du cycle cellulaire. Elles sont également impliquées dans plusieurs cancers et ont un fort pouvoir tumorigène. Notre laboratoire a récemment montré que Cdc5 (la kinase PLK chez Saccharomyces cerevisiae) est également nécessaire pour l'adaptation aux dommages à l'ADN, et que la cible critique de Cdc5 au cours de ce processus pourrait être une cible peu conventionnelle localisée aux centrosomes de levures. Dans le but d’identifier ce substrat, une analyse intégrale du phosphoprotéome de PLK/Cdc5 par spectrométrie de masse devra être réalisée. Pour ce faire, un allèle CDC5 sensible à la température, c’est-à-dire une version mutante qui devient inactive à température élevée, devra être utilisée. Cet allèle devra être thermosensible à 30°C, afin de s’assurer qu’il sera le seul à être inactivé à cette température et que, par conséquent, seuls les substrats de Cdc5 seront identifiés. À cet effet, nous avons généré deux allèles cdc5 thermosensibles à 30°C : cdc5-17 et cdc5-18, puis analysé leur cycle cellulaire à 32°C. Les résultats de cette analyse ont montré que l’exposition des cellules à 32°C résulte en leur blocage en fin de mitose sous la forme bourgeonnée, témoignant d’un défaut dans la promotion de la sortie de la mitose. Ce défaut est causé par la mutation du gène CDC5 dont la protéine favorise la sortie de la mitose via deux voies : la voie du MEN (Mitotic Exit Network) et la voie du FEAR (Cdc Fourteen Early Anaphase Release). cdc5-17 et cdc5-18 représentent des outils biologiques précieux qui permettront de mieux analyser le phosphoprotéome de PLK/Cdc5 et de mener à l’identification des cibles de Cdc5 lors de la réponse d’adaptation aux dommages à l’ADN. Étant donné que l’adaptation aux dommages à l’ADN causés par des chimiothérapies représente l’un des facteurs permettant la prolifération des tumeurs cancéreuses, cette découverte serait un grand pas dans la lutte contre le cancer.
Resumo:
Hydroxyproline O-arabinosyltransferases (HPATs) are members of a small, deeply conserved family of plant-specific glycosyltransferases that add arabinose sugars to diverse proteins including cell wall-associated extensins and small signaling peptides. Recent genetic studies in flowering plants suggest that different HPAT homologs have been co-opted to function in diverse species-specific developmental contexts. However, nothing is known about the roles of HPATs in basal plants. We show that complete loss of HPAT function in Arabidopsis thaliana and the moss Physcomitrella patens results in a shared defect in gametophytic tip cell growth. Arabidopsis hpat1/2/3 triple knockout mutants suffer from a strong male sterility defect as a consequence of pollen tubes that fail to fully elongate following pollination. Knocking out the two HPAT genes of Physcomitrella results in larger multicellular filamentous networks due to increased elongation of protonemal tip cells. Physcomitrella hpat mutants lack cell-wall associated hydroxyproline arabinosides and can be rescued with exogenous cellulose, while global expression profiling shows that cell wall-associated genes are severely misexpressed, implicating a defect in cell wall formation during tip growth. Our findings point to a major role for HPATs in influencing cell elongation during tip growth in plants.
Resumo:
Rhodococcus fascians é uma actinomiceta fitopatogénica que induz uma doença, conhecida como irritação frondosa, caracterizada pela indução de múltiplos rebentos, numa vasta gama de plantas herbáceas dicotiledóneas. O principal factor de patogenicidade da bactéria é a produção de uma mistura de 6 citoquininas codificadas pelos genes do operão fas que está localizado num plasmídeo linear associado à virulência, pFiD188. Este trabalho teve como objectivo a análise de dois novos loci deste plasmídeo associados à virulência: GT1 que codifica uma glicosiltransferase e os genes mtr1 e mtr2, grandemente homólogos, que codificam metiltransferases dependentes de SAM. Trabalhos prévios com 21D5, mutante na glicosiltransferase, mostraram que possui uma morfologia de colónia modificada e forma agregados em culturas líquidas. Neste trabalho demonstrou-se que essas características não afectam o crescimento em meio de cultura rico, mas levam à incapacidade de proliferação em condições de privação de nutrientes, tendo um impacto forte na competência epifítica. Este impacto foi demostrado pela atenuação severa da virulência em 21D5, que foi acompanhada de uma expressão alterada dos genes fas e att, essenciais para a virulência, e consequente redução da capacidade de invasão dos tecidos da planta e de produção dos factores de virulência. Demonstrou-se também que a expressão de GT1 é induzida por compostos que são acumulados em plantas nas fases iniciais da infecção, colocando a função de GT1 no começo da interacção. Tal como R. fascians, Streptomyces turgidiscabies possui um operão fas e dois genes mtr associados. R. fascians mutantes nestes genes mtr’s perderam a capacidade de provocar sintomas, mas produziram 2MeS-citoquininas, implicando que outras citoquininas metiladas são cruciais para a indução da doença. De modo a identificar os produtos de reacção das MTRs procedeu-se à análise do perfil de citoquininas de R. fascians em condições que induzem a expressão dos genes do operão fas e de S. turgidiscabies alimentados com SAM e adenina marcadas com 14C em TLC. No entanto, não foi possível a identificação de compostos dependentes de fas ou mtr nos sobrenadantes. Pela determinação do perfil de expressão dos genes mtr in vitro e in planta tornou-se claro que a regulação destes genes é muito complexa, sendo a sua expressão limitada a células de R. fascians que colonizam o hospedeiro. Para possibilitar a identificação dos produtos de recção de MTR, desenvolveu-se um protocolo que permite a expressão in planta em condições in vitro, o que permitirá a repetição dos ensaios de marcação com 14C.
Resumo:
Induced mutagenesis has been exploited for crop improvement and for investigating gene function and regulation. To unravel molecular mechanisms of stress resilience, we applied state-of-the-art genomics-based gene cloning methods to barley mutant lines showing altered root and shoot architecture and disease lesion mimic phenotypes. With a novel method that we named complementation by sequencing, we cloned NEC3, the causal gene for an orange-spotted disease lesion mimic phenotype. NEC3 belongs to the CYP71P1 gene family and it is involved in serotonin biosynthesis. By comparative phylogenetic analysis we showed that CYP71P1 emerged early in angiosperm evolution but was lost in some lineages including Arabidopsis thaliana. By BSA-Seq, we cloned the gene whose mutation increased leaf width, and we showed that the gene corresponded to the previously cloned BROADLEAF1. By BSA coupled to WGS sequencing, we cloned EGT1 and EGT2, two genes that regulate root gravitropic set point angle. EGT1 encodes a Tubby-like F-box protein and EGT2 encodes a Sterile Alpha Motive protein; EGT2 is phylogenetically related to AtSAM5 in Arabidopsis and to WEEP in peach where it regulates branch angle. Both EGT1 and EGT2 are conserved in wheat. We hypothesized that both participate to an anti-gravitropic offset mechanism since their disruption causes mutant roots to grow along the gravity vector. By the MutMap+ method, we cloned the causal gene of a short and semi-rigid root mutant and found that it encodes for an endoglucanase and is the ortholog of OsGLU3 in rice whose mutant has the same phenotype, suggesting that the gene is conserved in barley and rice. The mutants and the corresponding genes which were cloned in this work are involved in the response to stress and can potentially contribute to crop adaptation.
Resumo:
Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive. In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.