837 resultados para Decision Support
Resumo:
Landslide hazard and risk are growing as a consequence of climate change and demographic pressure. Land‐use planning represents a powerful tool to manage this socio‐economic problem and build sustainable and landslide resilient communities. Landslide inventory maps are a cornerstone of land‐use planning and, consequently, their quality assessment represents a burning issue. This work aimed to define the quality parameters of a landslide inventory and assess its spatial and temporal accuracy with regard to its possible applications to land‐use planning. In this sense, I proceeded according to a two‐steps approach. An overall assessment of the accuracy of data geographic positioning was performed on four case study sites located in the Italian Northern Apennines. The quantification of the overall spatial and temporal accuracy, instead, focused on the Dorgola Valley (Province of Reggio Emilia). The assessment of spatial accuracy involved a comparison between remotely sensed and field survey data, as well as an innovative fuzzylike analysis of a multi‐temporal landslide inventory map. Conversely, long‐ and short‐term landslide temporal persistence was appraised over a period of 60 years with the aid of 18 remotely sensed image sets. These results were eventually compared with the current Territorial Plan for Provincial Coordination (PTCP) of the Province of Reggio Emilia. The outcome of this work suggested that geomorphologically detected and mapped landslides are a significant approximation of a more complex reality. In order to convey to the end‐users this intrinsic uncertainty, a new form of cartographic representation is needed. In this sense, a fuzzy raster landslide map may be an option. With regard to land‐use planning, landslide inventory maps, if appropriately updated, confirmed to be essential decision‐support tools. This research, however, proved that their spatial and temporal uncertainty discourages any direct use as zoning maps, especially when zoning itself is associated to statutory or advisory regulations.
Resumo:
Many of developing countries are facing crisis in water management due to increasing of population, water scarcity, water contaminations and effects of world economic crisis. Water distribution systems in developing countries are facing many challenges of efficient repair and rehabilitation since the information of water network is very limited, which makes the rehabilitation assessment plans very difficult. Sufficient information with high technology in developed countries makes the assessment for rehabilitation easy. Developing countries have many difficulties to assess the water network causing system failure, deterioration of mains and bad water quality in the network due to pipe corrosion and deterioration. The limited information brought into focus the urgent need to develop economical assessment for rehabilitation of water distribution systems adapted to water utilities. Gaza Strip is subject to a first case study, suffering from severe shortage in the water supply and environmental problems and contamination of underground water resources. This research focuses on improvement of water supply network to reduce the water losses in water network based on limited database using techniques of ArcGIS and commercial water network software (WaterCAD). A new approach for rehabilitation water pipes has been presented in Gaza city case study. Integrated rehabilitation assessment model has been developed for rehabilitation water pipes including three components; hydraulic assessment model, Physical assessment model and Structural assessment model. WaterCAD model has been developed with integrated in ArcGIS to produce the hydraulic assessment model for water network. The model have been designed based on pipe condition assessment with 100 score points as a maximum points for pipe condition. As results from this model, we can indicate that 40% of water pipeline have score points less than 50 points and about 10% of total pipes length have less than 30 score points. By using this model, the rehabilitation plans for each region in Gaza city can be achieved based on available budget and condition of pipes. The second case study is Kuala Lumpur Case from semi-developed countries, which has been used to develop an approach to improve the water network under crucial conditions using, advanced statistical and GIS techniques. Kuala Lumpur (KL) has water losses about 40% and high failure rate, which make severe problem. This case can represent cases in South Asia countries. Kuala Lumpur faced big challenges to reduce the water losses in water network during last 5 years. One of these challenges is high deterioration of asbestos cement (AC) pipes. They need to replace more than 6500 km of AC pipes, which need a huge budget to be achieved. Asbestos cement is subject to deterioration due to various chemical processes that either leach out the cement material or penetrate the concrete to form products that weaken the cement matrix. This case presents an approach for geo-statistical model for modelling pipe failures in a water distribution network. Database of Syabas Company (Kuala Lumpur water company) has been used in developing the model. The statistical models have been calibrated, verified and used to predict failures for both networks and individual pipes. The mathematical formulation developed for failure frequency in Kuala Lumpur was based on different pipeline characteristics, reflecting several factors such as pipe diameter, length, pressure and failure history. Generalized linear model have been applied to predict pipe failures based on District Meter Zone (DMZ) and individual pipe levels. Based on Kuala Lumpur case study, several outputs and implications have been achieved. Correlations between spatial and temporal intervals of pipe failures also have been done using ArcGIS software. Water Pipe Assessment Model (WPAM) has been developed using the analysis of historical pipe failure in Kuala Lumpur which prioritizing the pipe rehabilitation candidates based on ranking system. Frankfurt Water Network in Germany is the third main case study. This case makes an overview for Survival analysis and neural network methods used in water network. Rehabilitation strategies of water pipes have been developed for Frankfurt water network in cooperation with Mainova (Frankfurt Water Company). This thesis also presents a methodology of technical condition assessment of plastic pipes based on simple analysis. This thesis aims to make contribution to improve the prediction of pipe failures in water networks using Geographic Information System (GIS) and Decision Support System (DSS). The output from the technical condition assessment model can be used to estimate future budget needs for rehabilitation and to define pipes with high priority for replacement based on poor condition. rn
Resumo:
Il progetto di ricerca è finalizzato allo sviluppo di una metodologia innovativa di supporto decisionale nel processo di selezione tra alternative progettuali, basata su indicatori di prestazione. In particolare il lavoro si è focalizzato sulla definizione d’indicatori atti a supportare la decisione negli interventi di sbottigliamento di un impianto di processo. Sono stati sviluppati due indicatori, “bottleneck indicators”, che permettono di valutare la reale necessità dello sbottigliamento, individuando le cause che impediscono la produzione e lo sfruttamento delle apparecchiature. Questi sono stati validati attraverso l’applicazione all’analisi di un intervento su un impianto esistente e verificando che lo sfruttamento delle apparecchiature fosse correttamente individuato. Definita la necessità dell’intervento di sbottigliamento, è stato affrontato il problema della selezione tra alternative di processo possibili per realizzarlo. È stato applicato alla scelta un metodo basato su indicatori di sostenibilità che consente di confrontare le alternative considerando non solo il ritorno economico degli investimenti ma anche gli impatti su ambiente e sicurezza, e che è stato ulteriormente sviluppato in questa tesi. Sono stati definiti due indicatori, “area hazard indicators”, relativi alle emissioni fuggitive, per integrare questi aspetti nell’analisi della sostenibilità delle alternative. Per migliorare l’accuratezza nella quantificazione degli impatti è stato sviluppato un nuovo modello previsionale atto alla stima delle emissioni fuggitive di un impianto, basato unicamente sui dati disponibili in fase progettuale, che tiene conto delle tipologie di sorgenti emettitrici, dei loro meccanismi di perdita e della manutenzione. Validato mediante il confronto con dati sperimentali di un impianto produttivo, si è dimostrato che tale metodo è indispensabile per un corretto confronto delle alternative poiché i modelli esistenti sovrastimano eccessivamente le emissioni reali. Infine applicando gli indicatori ad un impianto esistente si è dimostrato che sono fondamentali per semplificare il processo decisionale, fornendo chiare e precise indicazioni impiegando un numero limitato di informazioni per ricavarle.
Resumo:
To assess the impact of screening programmes in reducing the prevalence of Chlamydia trachomatis, mathematical and computational models are used as a guideline for decision support. Unfortunately, large uncertainties exist about the parameters that determine the transmission dynamics of C. trachomatis. Here, we use a SEIRS (susceptible-exposed-infected-recovered-susceptible) model to critically analyze the turnover of C. trachomatis in a population and the impact of a screening programme. We perform a sensitivity analysis on the most important steps during an infection with C. trachomatis. Varying the fraction of the infections becoming symptomatic as well as the duration of the symptomatic period within the range of previously used parameter estimates has little effect on the transmission dynamics. However, uncertainties in the duration of temporary immunity and the asymptomatic period can result in large differences in the predicted impact of a screening programme. We therefore analyze previously published data on the persistence of asymptomatic C. trachomatis infection in women and estimate the mean duration of the asymptomatic period to be longer than anticipated so far, namely 433 days (95% CI: 420-447 days). Our study shows that a longer duration of the asymptomatic period results in a more pronounced impact of a screening programme. However, due to the slower turnover of the infection, a substantial reduction in prevalence can only be achieved after screening for several years or decades.
Resumo:
Exposure to combination antiretroviral therapy (cART) can lead to important metabolic changes and increased risk of coronary heart disease (CHD). Computerized clinical decision support systems have been advocated to improve the management of patients at risk for CHD but it is unclear whether such systems reduce patients' risk for CHD.
Resumo:
SMARTDIAB is a platform designed to support the monitoring, management, and treatment of patients with type 1 diabetes mellitus (T1DM), by combining state-of-the-art approaches in the fields of database (DB) technologies, communications, simulation algorithms, and data mining. SMARTDIAB consists mainly of two units: 1) the patient unit (PU); and 2) the patient management unit (PMU), which communicate with each other for data exchange. The PMU can be accessed by the PU through the internet using devices, such as PCs/laptops with direct internet access or mobile phones via a Wi-Fi/General Packet Radio Service access network. The PU consists of an insulin pump for subcutaneous insulin infusion to the patient and a continuous glucose measurement system. The aforementioned devices running a user-friendly application gather patient's related information and transmit it to the PMU. The PMU consists of a diabetes data management system (DDMS), a decision support system (DSS) that provides risk assessment for long-term diabetes complications, and an insulin infusion advisory system (IIAS), which reside on a Web server. The DDMS can be accessed from both medical personnel and patients, with appropriate security access rights and front-end interfaces. The DDMS, apart from being used for data storage/retrieval, provides also advanced tools for the intelligent processing of the patient's data, supporting the physician in decision making, regarding the patient's treatment. The IIAS is used to close the loop between the insulin pump and the continuous glucose monitoring system, by providing the pump with the appropriate insulin infusion rate in order to keep the patient's glucose levels within predefined limits. The pilot version of the SMARTDIAB has already been implemented, while the platform's evaluation in clinical environment is being in progress.
Resumo:
Pollinating insects form a key component of European biodiversity, and provide a vital ecosystem service to crops and wild plants. There is growing evidence of declines in both wild and domesticated pollinators, and parallel declines in plants relying upon them. The STEP project (Status and Trends of European Pollinators, 2010-2015, www.step-project.net) is documenting critical elements in the nature and extent of these declines, examining key functional traits associated with pollination deficits, and developing a Red List for some European pollinator groups. Together these activities are laying the groundwork for future pollinator monitoring programmes. STEP is also assessing the relative importance of potential drivers of pollinator declines, including climate change, habitat loss and fragmentation, agrochemicals, pathogens, alien species, light pollution, and their interactions. We are measuring the ecological and economic impacts of declining pollinator services and floral resources, including effects on wild plant populations, crop production and human nutrition. STEP is reviewing existing and potential mitigation options, and providing novel tests of their effectiveness across Europe. Our work is building upon existing and newly developed datasets and models, complemented by spatially-replicated campaigns of field research to fill gaps in current knowledge. Findings are being integrated into a policy-relevant framework to create evidence-based decision support tools. STEP is establishing communication links to a wide range of stakeholders across Europe and beyond, including policy makers, beekeepers, farmers, academics and the general public. Taken together, the STEP research programme aims to improve our understanding of the nature, causes, consequences and potential mitigation of declines in pollination services at local, national, continental and global scales.
Resumo:
Background The goal of our work was to develop a simple method to evaluate a compensation treatment after unplanned treatment interruptions with respect to their tumour- and normal tissue effect. Methods We developed a software tool in java programming language based on existing recommendations to compensate for treatment interruptions. In order to express and visualize the deviations from the originally planned tumour and normal tissue effects we defined the compensability index. Results The compensability index represents an evaluation of the suitability of compensatory radiotherapy in a single number based on the number of days used for compensation and the preference of preserving the originally planned tumour effect or not exceeding the originally planned normal tissue effect. An automated tool provides a method for quick evaluation of compensation treatments. Conclusions The compensability index calculation may serve as a decision support system based on existing and established recommendations.
Resumo:
Every inclined land surface has a potential for soil and water degradation, the seriousness depends on a multitude of parameters such as slope, soil type, geomorphology, rainfall, land use and natural vegetation cover. In Laos this intensified land use leads to reduced vegetation cover, to increased soil erosion, decreasing yield, and finally is likely to influence the hydrological regime. Against this background the Mekong River Commission (MRC) elaborated a spatial explicit Watershed Classification (WSC) for the Lower Mekong Basin. Based on topographic factors derived from a high-resolution Digital Terrain Model, five watershed classes are calculated, giving indication about the sensitivity to resource degradation by soil erosion. The WSC allows spatial priority setting for watershed management and generally supports informed decision making on reconnaissance level. In the conclusions focus is laid on general considerations when GIS techniques are used for spatial decision support in a development context.
Resumo:
The past decade has brought significant advancements in seasonal climate forecasting. However, water resources decision support and management continues to be based almost entirely on historical observations and does not take advantage of climate forecasts. This study builds on previous work that conditioned streamflow ensemble forecasts on observable climate indicators, such as the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) for use in a decision support model for the Highland Lakes multi-reservoir system in central Texas operated by the Lower Colorado River Authority (LCRA). In the current study, seasonal soil moisture is explored as a climate indicator and predictor of annual streamflow for the LCRA region. The main purpose of this study is to evaluate the correlation of fractional soil moisture with streamflow using the 1950-2000 Variable Infiltration Capacity (VIC) Retrospective Land Surface Data Set over the LCRA region. Correlations were determined by examining different annual and seasonal combinations of VIC modeled fractional soil moisture and observed streamflow. The applicability of the VIC Retrospective Land Surface Data Set as a data source for this study is tested along with establishing and analyzing patterns of climatology for the watershed study area using the selected data source (VIC model) and historical data. Correlation results showed potential for the use of soil moisture as a predictor of streamflow over the LCRA region. This was evident by the good correlations found between seasonal soil moisture and seasonal streamflow during coincident seasons as well as between seasonal and annual soil moisture with annual streamflow during coincident years. With the findings of good correlation between seasonal soil moisture from the VIC Retrospective Land Surface Data Set with observed annual streamflow presented in this study, future research would evaluate the application of NOAA Climate Prediction Center (CPC) forecasts of soil moisture in predicting annual streamflow for use in the decision support model for the LCRA.
Resumo:
Routine bridge inspections require labor intensive and highly subjective visual interpretation to determine bridge deck surface condition. Light Detection and Ranging (LiDAR) a relatively new class of survey instrument has become a popular and increasingly used technology for providing as-built and inventory data in civil applications. While an increasing number of private and governmental agencies possess terrestrial and mobile LiDAR systems, an understanding of the technology’s capabilities and potential applications continues to evolve. LiDAR is a line-of-sight instrument and as such, care must be taken when establishing scan locations and resolution to allow the capture of data at an adequate resolution for defining features that contribute to the analysis of bridge deck surface condition. Information such as the location, area, and volume of spalling on deck surfaces, undersides, and support columns can be derived from properly collected LiDAR point clouds. The LiDAR point clouds contain information that can provide quantitative surface condition information, resulting in more accurate structural health monitoring. LiDAR scans were collected at three study bridges, each of which displayed a varying degree of degradation. A variety of commercially available analysis tools and an independently developed algorithm written in ArcGIS Python (ArcPy) were used to locate and quantify surface defects such as location, volume, and area of spalls. The results were visual and numerically displayed in a user-friendly web-based decision support tool integrating prior bridge condition metrics for comparison. LiDAR data processing procedures along with strengths and limitations of point clouds for defining features useful for assessing bridge deck condition are discussed. Point cloud density and incidence angle are two attributes that must be managed carefully to ensure data collected are of high quality and useful for bridge condition evaluation. When collected properly to ensure effective evaluation of bridge surface condition, LiDAR data can be analyzed to provide a useful data set from which to derive bridge deck condition information.
Analysis of spring break-up and its effects on a biomass feedstock supply chain in northern Michigan
Resumo:
Demand for bio-fuels is expected to increase, due to rising prices of fossil fuels and concerns over greenhouse gas emissions and energy security. The overall cost of biomass energy generation is primarily related to biomass harvesting activity, transportation, and storage. With a commercial-scale cellulosic ethanol processing facility in Kinross Township of Chippewa County, Michigan about to be built, models including a simulation model and an optimization model have been developed to provide decision support for the facility. Both models track cost, emissions and energy consumption. While the optimization model provides guidance for a long-term strategic plan, the simulation model aims to present detailed output for specified operational scenarios over an annual period. Most importantly, the simulation model considers the uncertainty of spring break-up timing, i.e., seasonal road restrictions. Spring break-up timing is important because it will impact the feasibility of harvesting activity and the time duration of transportation restrictions, which significantly changes the availability of feedstock for the processing facility. This thesis focuses on the statistical model of spring break-up used in the simulation model. Spring break-up timing depends on various factors, including temperature, road conditions and soil type, as well as individual decision making processes at the county level. The spring break-up model, based on the historical spring break-up data from 27 counties over the period of 2002-2010, starts by specifying the probability distribution of a particular county’s spring break-up start day and end day, and then relates the spring break-up timing of the other counties in the harvesting zone to the first county. In order to estimate the dependence relationship between counties, regression analyses, including standard linear regression and reduced major axis regression, are conducted. Using realizations (scenarios) of spring break-up generated by the statistical spring breakup model, the simulation model is able to probabilistically evaluate different harvesting and transportation plans to help the bio-fuel facility select the most effective strategy. For early spring break-up, which usually indicates a longer than average break-up period, more log storage is required, total cost increases, and the probability of plant closure increases. The risk of plant closure may be partially offset through increased use of rail transportation, which is not subject to spring break-up restrictions. However, rail availability and rail yard storage may then become limiting factors in the supply chain. Rail use will impact total cost, energy consumption, system-wide CO2 emissions, and the reliability of providing feedstock to the bio-fuel processing facility.
Resumo:
The management of anemia in patients with chronic renal failure has greatly improved with the availability of recombinant human erythropoietin in the late 1980s, leading to a considerable reduction in mortality and morbidity and to an improvement in quality of life. The findings from recent controlled clinical outcome trials have resulted in a rather narrow, generally accepted therapeutic hematocrit target range. However, currently available dosing algorithms do not permit achievement and maintenance of target values within the therapeutic range in many patients. One possible explanation for this failure may be the ignorance of a finite erythrocyte lifespan not integrated into most algorithms. The purpose of this article is to underline the essential role played by the erythrocyte lifespan in the erythropoietic response to recombinant human erythropoietin and to encourage the integration of this concept in the future development of computer-assisted decision support systems.
Resumo:
Most desertification research focuses on degradation assessments without putting sufficient emphasis on prevention and mitigation strategies, although the concept of Sustainable Land Management (SLM) is increasingly being acknowledged. A variety of already applied conservation measures exist at the local level, but they are not adequately recognised, evaluated and shared, either by land users, technicians, researchers, or policy makers. Likewise, collaboration between research and implementation is often insufficient. The aim of this paper is to present a new methodology for a participatory process of appraising and selecting desertification mitigation strategies, and to present first experiences from its application in the EU-funded DESIRE project. The methodology combines a collective learning and decision approach with the use of evaluated global best practices. In three parts, it moves through a concise process, starting with identifying land degradation and locally applied solutions in a stakeholder workshop, leading to assessing local solutions with a standardised evaluation tool, and ending with jointly selecting promising strategies for implementation with the help of a decision support tool. The methodology is currently being applied in 16 study sites. Preliminary analysis from the application of the first part of the methodology shows that the initial stakeholder workshop results in a good basis for stakeholder cooperation, and in promising land conservation practices for further assessment. Study site research teams appreciated the valuable results, as burning issues and promising options emerged from joint reflection. The methodology is suitable to initiate mutual learning among different stakeholder groups and to integrate local and scientific knowledge.
Resumo:
A decision support system based on a neural network approach is proposed to advise on insulin regime and dose adjustment for type 1 diabetes patients.