1000 resultados para DPL models


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show by numerical simulations that discretized versions of commonly studied continuum nonlinear growth equations (such as the Kardar-Parisi-Zhangequation and the Lai-Das Sarma-Villain equation) and related atomistic models of epitaxial growth have a generic instability in which isolated pillars (or grooves) on an otherwise flat interface grow in time when their height (or depth) exceeds a critical value. Depending on the details of the model, the instability found in the discretized version may or may not be present in the truly continuum growth equation, indicating that the behavior of discretized nonlinear growth equations may be very different from that of their continuum counterparts. This instability can be controlled either by the introduction of higher-order nonlinear terms with appropriate coefficients or by restricting the growth of pillars (or grooves) by other means. A number of such ''controlled instability'' models are studied by simulation. For appropriate choice of the parameters used for controlling the instability, these models exhibit intermittent behavior, characterized by multiexponent scaling of height fluctuations, over the time interval during which the instability is active. The behavior found in this regime is very similar to the ''turbulent'' behavior observed in recent simulations of several one- and two-dimensional atomistic models of epitaxial growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-time scale stochastic approximation algorithm is proposed for simulation-based parametric optimization of hidden Markov models, as an alternative to the traditional approaches to ''infinitesimal perturbation analysis.'' Its convergence is analyzed, and a queueing example is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-exponential electron transfer kinetics in complex systems are often analyzed in terms of a quenched, static disorder model. In this work we present an alternative analysis in terms of a simple dynamic disorder model where the solvent is characterized by highly non-exponential dynamics. We consider both low and high barrier reactions. For the former, the main result is a simple analytical expression for the survival probability of the reactant. In this case, electron transfer, in the long time, is controlled by the solvent polarization relaxation-in agreement with the analyses of Rips and Jortner and of Nadler and Marcus. The short time dynamics is also non-exponential, but for different reasons. The high barrier reactions, on the other hand, show an interesting dynamic dependence on the electronic coupling element, V-el.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of spurious patterns in neural associative memory models is discussed, Some suggestions to solve this problem from the literature are reviewed and their inadequacies are pointed out, A solution based on the notion of neural self-interaction with a suitably chosen magnitude is presented for the Hebb learning rule. For an optimal learning rule based on linear programming, asymmetric dilution of synaptic connections is presented as another solution to the problem of spurious patterns, With varying percentages of asymmetric dilution it is demonstrated numerically that this optimal learning rule leads to near total suppression of spurious patterns. For practical usage of neural associative memory networks a combination of the two solutions with the optimal learning rule is recommended to be the best proposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil moisture characteristic (SMC) forms an important input to mathematical models of water and solute transport in the unsaturated-soil zone. Owing to their simplicity and ease of use, texture-based regression models are commonly used to estimate the SMC from basic soil properties. In this study, the performances of six such regression models were evaluated on three soils. Moisture characteristics generated by the regression models were statistically compared with the characteristics developed independently from laboratory and in-situ retention data of the soil profiles. Results of the statistical performance evaluation, while providing useful information on the errors involved in estimating the SMC, also highlighted the importance of the nature of the data set underlying the regression models. Among the models evaluated, the one possessing an underlying data set of in-situ measurements was found to be the best estimator of the in-situ SMC for all the soils. Considerable errors arose when a textural model based on laboratory data was used to estimate the field retention characteristics of unsaturated soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The statistical thermodynamics of adsorption in caged zeolites is developed by treating the zeolite as an ensemble of M identical cages or subsystems. Within each cage adsorption is assumed to occur onto a lattice of n identical sites. Expressions for the average occupancy per cage are obtained by minimizing the Helmholtz free energy in the canonical ensemble subject to the constraints of constant M and constant number of adsorbates N. Adsorbate-adsorbate interactions in the Brag-Williams or mean field approximation are treated in two ways. The local mean field approximation (LMFA) is based on the local cage occupancy and the global mean field approximation (GMFA) is based on the average coverage of the ensemble. The GMFA is shown to be equivalent in formulation to treating the zeolite as a collection of interacting single site subsystems. In contrast, the treatment in the LMFA retains the description of the zeolite as an ensemble of identical cages, whose thermodynamic properties are conveniently derived in the grand canonical ensemble. For a z coordinated lattice within the zeolite cage, with epsilon(aa) as the adsorbate-adsorbate interaction parameter, the comparisons for different values of epsilon(aa)(*)=epsilon(aa)z/2kT, and number of sites per cage, n, illustrate that for -1 0. We compare the isotherms predicted with the LMFA with previous GMFA predictions [K. G. Ayappa, C. R. Kamala, and T. A. Abinandanan, J. Chem. Phys. 110, 8714 (1999)] (which incorporates both the site volume reduction and a coverage-dependent epsilon(aa)) for xenon and methane in zeolite NaA. In all cases the predicted isotherms are very similar, with the exception of a small steplike feature present in the LMFA for xenon at higher coverages. (C) 1999 American Institute of Physics. [S0021-9606(99)70333-8].

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic assessment of the submodels of conditional moment closure (CMC) formalism for the autoignition problem is carried out using direct numerical simulation (DNS) data. An initially non-premixed, n-heptane/air system, subjected to a three-dimensional, homogeneous, isotropic, and decaying turbulence, is considered. Two kinetic schemes, (1) a one-step and (2) a reduced four-step reaction mechanism, are considered for chemistry An alternative formulation is developed for closure of the mean chemical source term , based on the condition that the instantaneous fluctuation of excess temperature is small. With this model, it is shown that the CMC equations describe the autoignition process all the way up to near the equilibrium limit. The effect of second-order terms (namely, conditional variance of temperature excess sigma(2) and conditional correlations of species q(ij)) in modeling is examined. Comparison with DNS data shows that sigma(2) has little effect on the predicted conditional mean temperature evolution, if the average conditional scalar dissipation rate is properly modeled. Using DNS data, a correction factor is introduced in the modeling of nonlinear terms to include the effect of species fluctuations. Computations including such a correction factor show that the species conditional correlations q(ij) have little effect on model predictions with a one-step reaction, but those q(ij) involving intermediate species are found to be crucial when four-step reduced kinetics is considered. The "most reactive mixture fraction" is found to vary with time when a four-step kinetics is considered. First-order CMC results are found to be qualitatively wrong if the conditional mean scalar dissipation rate is not modeled properly. The autoignition delay time predicted by the CMC model compares excellently with DNS results and shows a trend similar to experimental data over a range of initial temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the simplest IEEE 802.11 WLAN networks for which analytical models are available and seek to provide an experimental validation of these models. Our experiments include the following cases: (i) two nodes with saturated queues, sending fixed-length UDP packets to each other, and (ii) a TCP-controlled transfer between two nodes. Our experiments are based entirely on Aruba AP-70 access points operating under Linux. We report our observations on certain non-standard behavior of the devices. In cases where the devices adhere to the standards, we find that the results from the analytical models estimate the experimental data with a mean error of 3-5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop analytical models for estimating the energy spent by stations (STAs) in infrastructure WLANs when performing TCP controlled file downloads. We focus on the energy spent in radio communication when the STAs are in the Continuously Active Mode (CAM), or in the static Power Save Mode (PSM). Our approach is to develop accurate models for obtaining the fraction of times the STA radios spend in idling, receiving and transmitting. We discuss two traffic models for each mode of operation: (i) each STA performs one large file download, and (ii) the STAs perform short file transfers. We evaluate the rate of STA energy expenditure with long file downloads, and show that static PSM is worse than just using CAM. For short file downloads we compute the number of file downloads that can be completed with given battery capacity, and show that PSM performs better than CAM for this case. We provide a validation of our analytical models using the NS-2 simulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural network models of associative memory exhibit a large number of spurious attractors of the network dynamics which are not correlated with any memory state. These spurious attractors, analogous to "glassy" local minima of the energy or free energy of a system of particles, degrade the performance of the network by trapping trajectories starting from states that are not close to one of the memory states. Different methods for reducing the adverse effects of spurious attractors are examined with emphasis on the role of synaptic asymmetry. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inspired by the exact solution of the Majumdar-Ghosh model, a family of one-dimensional, translationally invariant spin Hamiltonians is constructed. The exchange coupling in these models is antiferromagnetic, and decreases linearly with the separation between the spins. The coupling becomes identically zero beyond a certain distance. It is rigorously proved that the dimer configuration is an exact, superstable ground-state configuration of all the members of the family on a periodic chain. The ground state is twofold degenerate, and there exists an energy gap above the ground state. The Majumdar-Ghosh Hamiltonian with a twofold degenerate dimer ground state is just the first member of the family. The scheme of construction is generalized to two and three dimensions, and illustrated with the help of some concrete examples. The first member in two dimensions is the Shastry-Sutherland model. Many of these models have exponentially degenerate, exact dimer ground states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting with the Levinthal paradox, a brief introduction to the protein folding problem is presented. The existing theories of protein folding, including the folding funnel scenario, are discussed. After briefly discussing different simulation studies of model proteins, we discuss our recent work on the dynamics of folding of the model HP-36 (the chicken villin headpiece) protein by using a simplified hydropathy scale. Special attention has been paid to the statics and dynamics of contact formation among the hydrophobic residues. The results obtained from this simple model appear to be surprisingly similar to several features observed in the folding of real proteins. The account concludes with a discussion of future problems.