816 resultados para DOP FEEDBACK SIGNAL
Resumo:
This paper presents a tool box developed to read files describing a SIMULINK® model and translates it into a structural VHDL-AMS description. In translation process, all files and directory structures to simulate the translated model on SystemVision™ environment is generate. The tool box named MS2SV was tested by three models of commercially available digital-to-analogue converters. All models use the R2R ladder network to conversion, but the functionality of these three components is different. The methodology of conversion of the model is presents together with sort theory about R-2R ladder network. In the evaluation of the translated models, we used a sine waveform input signal and the waveform generated by D/A conversion process was compared by FFT analysis. The results show the viability of this type of approach. This work considers some of challenges set by the electronic industry for the further development of simulation methodologies and tools in the field of mixed-signal technology. © 2007 IEEE.
Resumo:
We establish the conditions under which it is possible to construct signal sets satisfying the properties of being geometrically uniform and matched to additive quotient groups. Such signal sets consist of subsets of signal spaces identified to integers rings ℤ[i] and ℤ[ω] in ℤ2. © 2008 KSCAM and Springer-Verlag.
Resumo:
This paper is based on the analysis and implementation of a new drive system applied to refrigeration systems, complying with the restrictions imposed by the IEC standards (Harmonic/Flicker/EMI-Electromagnetic Interference restrictions), in order to obtain high efficiency, high power factor, reduced harmonic distortion in the input current and reduced electromagnetic interference, with excellent performance in temperature control of a refrigeration prototype system (automatic control, precision and high dynamic response). The proposal is replace the single-phase motor by a three-phase motor, in the conventional refrigeration system. In this way, a proper control technique can be applied, using a closed-loop (feedback control), that will allow an accurate adjustment of the desirable temperature. The proposed refrigeration prototype uses a 0.5Hp three-phase motor and an open (Belt-Drive) Bitzer IY type compressor. The input rectifier stage's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the IEC61000-3-2 standards. The digital controller for the output three-phase inverter stage has been developed using a conventional voltage-frequency control (scalar V/f control), and a simplified stator oriented Vector control, in order to verify the feasibility and performance of the proposed digital controls for continuous temperature control applied at the refrigerator prototype. ©2008 IEEE.
Resumo:
New Linear Matrix Inequalities (LMI) conditions are proposed for the following problem, called Strictly Positive Real (SPR) synthesis: given a linear time-invariant plant, find a constant output feedback matrix Ko and a constant output tandem matrix F for the controlled system to be SPR. It is assumed that the plant has the number of outputs greater than the number of inputs. Some sufficient conditions for the solution of the problem are presented and compared. These results can be directly applied in the LMI-based design of Variable Structure Control (VSC) of uncertain plants. ©2008 IEEE.
Resumo:
In the last decades there was a great development in the study of control systems to attenuate the harmful effect of natural events in great structures, as buildings and bridges. Magnetorheological fluid (MR), that is an intelligent material, has been considered in many proposals of project for these controllers. This work presents the controller design using feedback of states through LMI (Linear Matrix Inequalities) approach. The experimental test were carried out in a structure with two degrees of freedom with a connected shock absorber MR. Experimental tests were realized in order to specify the features of this semi-active controller. In this case, there exist states that are not measurable, so the feedback of the states involves the project of an estimator. The coupling of the MR damper causes a variation in dynamics properties, so an identification methods, based on experimental input/output signal was used to compare with the numerical application. The identification method of Prediction Error Methods - (PEM) was used to find the physical characteristics of the system through realization in modal space of states. This proposal allows the project of a semi-active control, where the main characteristic is the possibility of the variation of the damping coefficient.
Resumo:
A simple method for designing a digital state-derivative feedback gain and a feedforward gain such that the control law is equivalent to a known and adequate state feedback and feedforward control law of a digital redesigned system is presented. It is assumed that the plant is a linear controllable, time-invariant, Single-Input (SI) or Multiple-Input (MI) system. This procedure allows the use of well-known continuous-time state feedback design methods to directly design discrete-time state-derivative feedback control systems. The state-derivative feedback can be useful, for instance, in the vibration control of mechanical systems, where the main sensors are accelerometers. One example considering the digital redesign with state-derivative feedback of a helicopter illustrates the proposed method. © 2009 IEEE.
Resumo:
The alternate current biosusceptometry (ACB) is a biomagnetic technique used to study some physiological parameters associated with gastrointestinal (GI) tract. For this purpose it applies an AC magnetic field and measures the response originating from magnetic marks or tracers. This paper presents an equipment based on the ACB which uses anisotropic magnetoresistive (AMR) sensors and an inexpensive electronic support. The ACB-AMR developed consists of a square array of 6x6 sensors arranged in a firstorder gradiometer configuration with one reference sensor. The equipment was applied to capture magnetic images of different phantoms and to acquire gastric contraction activity of healthy rats. The results show a reasonable sensitivity and spatial-temporal resolution, so that it may be applied for imaging of phantoms and signal acquisition of the GI tract of small animals. © 2010 IEEE.
Resumo:
Incluye Bibliografía
Resumo:
This paper addresses the H ∞ state-feedback control design problem of discretetime Markov jump linear systems. First, under the assumption that the Markov parameter is measured, the main contribution is on the LMI characterization of all linear feedback controllers such that the closed loop output remains bounded by a given norm level. This results allows the robust controller design to deal with convex bounded parameter uncertainty, probability uncertainty and cluster availability of the Markov mode. For partly unknown transition probabilities, the proposed design problem is proved to be less conservative than one available in the current literature. An example is solved for illustration and comparisons. © 2011 IFAC.
Resumo:
In this work a new method is proposed for noise reduction in speech signals in the wavelet domain. The method for signal processing makes use of a transfer function, obtained as a polynomial combination of three processings, denominated operators. The proposed method has the objective of overcoming the deficiencies of the thresholding methods and the effective processing of speech corrupted by real noises. Using the method, two speech signals are processed, contaminated by white noise and colored noises. To verify the quality of the processed signals, two evaluation measures are used: signal to noise ratio (SNR) and perceptual evaluation of speech quality (PESQ).
Resumo:
Purpose: To analyze the components of the acoustic signal of swallowing using a specific software. Methods: Fourteen healthy subjects ranging in age from 20 to 50 years (mean age 31±10 years), were evaluated. Data collection consisted on the simultaneous capture of the swallowing audio with a microphone and of the swallowing videofluoroscopic image. The bursts of the swallowing acoustic signal were identified and their duration and the interval between them were later analyzed using a specific software, which allowed the simultaneous analyses between the acoustic wave and the videofluoroscopic image. Results: Three burst components were identified in most of the swallows evaluated. The first burst presented mean time of 87.3 milliseconds (ms) for water and 78.2 for the substance. The second burst presented mean time of 112.9 ms for water and 85.5 for the pasty substance. The mean interval between first and second burst was 82.1 ms for water and 95.3 ms for the pasty consistency, and between second and third burst was 339.8 ms for water and 322.0 ms for the pasty consistency. Conclusion: The software allowed the visualization of three bursts during the swallowing of healthy individuals, and showed that the swallowing signal in normal subjects is highly variable.
Resumo:
In this paper the dynamics of the ideal and non-ideal Duffing oscillator with chaotic behavior is considered. In order to suppress the chaotic behavior and to control the system, a control signal is introduced in the system dynamics. The control strategy involves the application of two control signals, a nonlinear feedforward control to maintain the controlled system in a periodic orbit, obtained by the harmonic balance method, and a state feedback control, obtained by the state dependent Riccati equation, to bring the system trajectory into the desired periodic orbit. Additionally, the control strategy includes an active magnetorheological damper to actuate on the system. The control force of the damper is a function of the electric current applied in the coil of the damper, that is based on the force given by the controller and on the velocity of the damper piston displacement. Numerical simulations demonstrate the effectiveness of the control strategy in leading the system from any initial condition to a desired orbit, and considering the mathematical model of the damper (MR), it was possible to control the force of the shock absorber (MR), by controlling the applied electric current in the coils of the damper. © 2012 Foundation for Scientific Research and Technological Innovation.
Resumo:
The water column overlying the submerged aquatic vegetation (SAV) canopy presents difficulties when using remote sensing images for mapping such vegetation. Inherent and apparent water optical properties and its optically active components, which are commonly present in natural waters, in addition to the water column height over the canopy, and plant characteristics are some of the factors that affect the signal from SAV mainly due to its strong energy absorption in the near-infrared. By considering these interferences, a hypothesis was developed that the vegetation signal is better conserved and less absorbed by the water column in certain intervals of the visible region of the spectrum; as a consequence, it is possible to distinguish the SAV signal. To distinguish the signal from SAV, two types of classification approaches were selected. Both of these methods consider the hemispherical-conical reflectance factor (HCRF) spectrum shape, although one type was supervised and the other one was not. The first method adopts cluster analysis and uses the parameters of the band (absorption, asymmetry, height and width) obtained by continuum removal as the input of the classification. The spectral angle mapper (SAM) was adopted as the supervised classification approach. Both approaches tested different wavelength intervals in the visible and near-infrared spectra. It was demonstrated that the 585 to 685-nm interval, corresponding to the green, yellow and red wavelength bands, offered the best results in both classification approaches. However, SAM classification showed better results relative to cluster analysis and correctly separated all spectral curves with or without SAV. Based on this research, it can be concluded that it is possible to discriminate areas with and without SAV using remote sensing. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Background: The relationship between normal and tangential force components (grip force - GF and load force - LF, respectively) acting on the digits-object interface during object manipulation reveals neural mechanisms involved in movement control. Here, we examined whether the feedback type provided to the participants during exertion of LF would influence GF-LF coordination and task performance. Methods. Sixteen young (24.7 ±3.8 years-old) volunteers isometrically exerted continuously sinusoidal FZ (vertical component of LF) by pulling a fixed instrumented handle up and relaxing under two feedback conditions: targeting and tracking. In targeting condition, FZ exertion range was determined by horizontal lines representing the upper (10 N) and lower (1 N) targets, with frequency (0.77 or 1.53 Hz) dictated by a metronome. In tracking condition, a sinusoidal template set at similar frequencies and range was presented and should be superposed by the participants' exerted FZ. Task performance was assessed by absolute errors at peaks (AEPeak) and valleys (AEValley) and GF-LF coordination by GF-LF ratios, maximum cross-correlation coefficients (r max), and time lags. Results: The results revealed no effect of feedback and no feedback by frequency interaction on any variable. AE Peak and GF-LF ratio were higher and rmax lower at 1.53 Hz than at 0.77 Hz. Conclusion: These findings indicate that the type of feedback does not influence task performance and GF-LF coordination. Therefore, we recommend the use of tracking tasks when assessing GF-LF coordination during isometric LF exertion in externally fixed instrumented handles because they are easier to understand and provide additional indices (e.g., RMSE) of voluntary force control. © 2013 Pedão et al.; licensee BioMed Central Ltd.
Resumo:
Introduction: Inflammatory cytokines are associated with decreased insulin signal transduction. Moreover, local oral inflammation, such as that accompanying periodontal disease, is associated with insulin resistance and type 2 diabetes mellitus. The aim of this study was to evaluate the effect of periapical lesions (PLs) on insulin signaling and insulin sensitivity in rats. We hypothesized that PLs alter systemic insulin signaling and insulin sensitivity via elevated plasmatic tumor necrosis factor α (TNF-α). Methods: Wistar rats were divided into control (CN) and PL groups. PLs were induced by exposing pulpal tissue to the oral environment. After 30 days, insulin sensitivity was measured using the insulin tolerance test. After euthanization, maxillae were processed for histopathology. Plasmatic concentrations of tumor necrosis factor α (TNF-α) were determined via the enzyme-linked immunosorbent assay. Insulin signal transduction was evaluated using insulin receptor substrate tyrosine phosphorylation status and serine phosphorylation status in periepididymal white adipose tissue via Western blotting. For insulin signaling and insulin tolerance tests, the analyses performed were analysis of variance followed by the Tukey post hoc test. For TNF-α analysis, the Student's t test was used. In all tests, P <.05 was considered significant. Results: The rats with PLs showed higher plasmatic TNF-α, lower constant rate for glucose disappearance values, and reduced pp185 tyrosine phosphorylation status but no change in serine phosphorylation status in white adipose tissue after insulin stimulation. Conclusions: PLs can cause alterations to both insulin signaling and insulin sensitivity, probably because of elevation of plasmatic TNF-α. The results from this study emphasize the importance of the prevention of local inflammatory diseases, such as PLs, with regard to the prevention of insulin resistance. Copyright © 2013 American Association of Endodontists.