995 resultados para DNA Checkerboard hybridization
Resumo:
Molecular evidence showed 46.2% of Trypanosoma cruzi infection in Mepraia spinolai insects from North-Central Chile, which is significantly higher than previous reports of up to 26% by microscopic observation. Our results show similar infection levels among nymphal stages, ranging from 38.3 to 54.1%, indicating that younger nymphs could be as important as older ones in parasite transmission. A cautionary note must be stressed to indicate the potential role of M. spinolai in transmitting T. cruzi in country areas due to the high infection level detected by molecular analysis.
Resumo:
The clinical value of an in-house cytomegalovirus nested polymerase chain reaction (CMV-PCR) and a commercial molecular assay hybrid capture CMV DNA assay (HCA) was evaluated in monitoring a group of renal transplant patients for six months follow up. In this study, the sensitivity, specificity, positive predictive value, and negative predictive value of nested CMV DNA PCR assay and HCA at the beginning of the study were 70, 42.9, 46.7, 66.7, and 60, 78.6, 66.7, and 73.3% respectively. After six months, they were 80, 66.7, 80, 66.7 for CMV PCR and 73.3, 88.9, 91.7, 66.7% for HCA respectively. These results indicate that in monitoring and predicting CMV infections in renal transplant recipients, not only qualitative but also quantitative assays must be used together in order to decide the preemptive strategies.
Resumo:
Fourteen hepatitis C virus (HCV) chronically infected patients were submitted to routine liver biopsy for histological evaluation. Liver samples were assayed to HCV-RNA by in situ hybridization, using digoxigenin labeled probe. HCV genotypes were found to be predominantly type 1 (71.4%), followed by genotype 3 (21.4%), and genotype 2 (7.2%). Alanine-aminotransferase levels were raised in 10 patients. The histopathological scores were minimal (21.4%), mild (57.2%), and moderate (21.4%). Viral RNA was detected in liver cells from nine patients (64.3%). ISH method provides localization and poor confirmation of HCV RNA in the liver tissue of HCV chronic patients.
Resumo:
The expression of a hybrid gene formed by the promoter region of the Xenopus laevis vitellogenin gene B1 and the CAT coding region is regulated by estrogen when the gene is transfected into hormone-responsive MCF-7 cells. Furthermore, the 5' flanking region of the gene B1 alone can confer inducibility to heterologous promoters, although to a varying extent depending on the promoter used. Deletion mapping of he vitellogenin hormone-responsive sequences revealed that a 13 bp element 5'-AGTCACTGTGACC-3' at position -334 is essential for estrogen inducibility. We have shown previously that this 13 bp element is present upstream of several liver-specific estrogen-inducible genes.
Resumo:
Axial deflection of DNA molecules in solution results from thermal motion and intrinsic curvature related to the DNA sequence. In order to measure directly the contribution of thermal motion we constructed intrinsically straight DNA molecules and measured their persistence length by cryo-electron microscopy. The persistence length of such intrinsically straight DNA molecules suspended in thin layers of cryo-vitrified solutions is about 80 nm. In order to test our experimental approach, we measured the apparent persistence length of DNA molecules with natural "random" sequences. The result of about 45 nm is consistent with the generally accepted value of the apparent persistence length of natural DNA sequences. By comparing the apparent persistence length to intrinsically straight DNA with that of natural DNA, it is possible to determine both the dynamic and the static contributions to the apparent persistence length.
Resumo:
The neuraminidase gene, nanH, is present in the O1, non-toxigenic Vibrio cholerae Amazonia strain. Its location has been assigned to a 150 kb NotI DNA fragment, with the use of pulsed-field gel electrophoresis and DNA hybridization. This NotI fragment is positioned inside 630 kb SfiI and 1900 kb I-CeuI fragments of chromosome 1. Association of the pathogenicity island VPI-2, carrying nanH and other genes, with toxigenic strains has been described by other authors. The presence of nanH in a non-toxigenic strain is an exception to this rule. The Amazonia strain nanH was sequenced (Genbank accession No. AY825932) and compared to available V. cholerae sequences. The sequence is different from those of pandemic strains, with 72 nucleotide substitutions. This is the first description of an O1 strain with a different nanH allele. The most variable domain of the Amazonia NanH is the second lectin wing, comprising 13 out of 17 amino acid substitutions. Based on the presence of nanH in the same region of the genome, and similarity of the adjacent sequences to VPI-2 sequences, it is proposed that the pathogenicity island VPI-2 is present in this strain.
Resumo:
Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.
Resumo:
Review of the book: The third man of the double Helix by Maurice Wilkins. 10.1038/sj.embor.7400062
Resumo:
The aim of this study was to demonstrate the DNA of Paracoccidioides brasiliensis in human serum samples of patients with paracoccidioidomycosis using the polymerase chain reaction (PCR). The diagnosis of paracoccidioidomycosis (PCM) was defined by microscopic observation of the fungus on direct exam or histopathology, culture, and serological positivity. DNA from serum of 33 patients with PCM was extracted and submitted to nested-PCR using primers from the gp 43 gene. Only one sample was positive on nested-PCR. We conclude that the prevalence of fungemia in patients with different clinical forms of PCM is low, limiting the use of serum DNA detection as an alternative diagnostic tool.
Resumo:
The Xenopus vitellogenin (vit) gene B1 estrogen-inducible enhancer is formed by two closely adjacent 13 bp imperfect palindromic estrogen-responsive elements (EREs), i.e. ERE-2 and ERE-1, having one and two base substitutions respectively, when compared to the perfect palindromic consensus ERE (GGTCANNNTGACC). Gene transfer experiments indicate that these degenerated elements, on their own, have a low or no regulatory capacity at all, but in vivo act together synergistically to confer high receptor- and hormone-dependent transcription activation to the heterologous HSV thymidine kinase promoter. Thus, the DNA region upstream of the vitB1 gene comprising these two imperfect EREs separated by 7 bp, was called the vitB1 estrogen-responsive unit (vitB1 ERU). Using in vitro protein-DNA interaction techniques, we demonstrate that estrogen receptor dimers bind cooperatively to the imperfect EREs of the vitB1 ERU. Binding of a first receptor dimer to the more conserved ERE-2 increases approximately 4- to 8-fold the binding affinity of the receptor to the adjacent less conserved ERE-1. Thus, we suggest that the observed synergistic estrogen-dependent transcription activation conferred by the pair of hormone-responsive DNA elements of the vit B1 ERU is the result of cooperative binding of two estrogen receptor dimers to these two adjacent imperfect EREs.
Biological embedding of early life exposures and disease risk in humans: a role for DNA methylation.
Resumo:
BACKGROUND: Following wider acceptance of "the thrifty phenotype" hypothesis and the convincing evidence that early life exposures can influence adult health even decades after the exposure, much interest has been placed on the mechanisms through which early life exposures become biologically embedded. METHODS: In this review, we summarize the current literature regarding biological embedding of early life experiences. To this end we conducted a literature search to identify studies investigating early life exposures in relation to DNA methylation changes. In addition, we summarize the challenges faced in investigations of epigenetic effects, stemming from the peculiarities of this emergent and complex field. A proper systematic review and meta-analyses were not feasible given the nature of the evidence. RESULTS: We identified 7 studies on early life socioeconomic circumstances, 10 studies on childhood obesity, and 6 studies on early life nutrition all relating to DNA methylation changes that met the stipulated inclusion criteria. The pool of evidence gathered, albeit small, favours a role of epigenetics and DNA methylation in biological embedding, but replication of findings, multiple comparison corrections, publication bias, and causality are concerns remaining to be addressed in future investigations. CONCLUSIONS: Based on these results, we hypothesize that epigenetics, in particular DNA methylation, is a plausible mechanism through which early life exposures are biologically embedded. This review describes the current status of the field and acts as a stepping stone for future, better designed investigations on how early life exposures might become biologically embedded through epigenetic effects. This article is protected by copyright. All rights reserved.
Resumo:
The ENCyclopedia Of DNA Elements (ENCODE) Project aims to identify all functional elements in the human genome sequence. The pilot phase of the Project is focused on a specified 30 megabases (approximately 1%) of the human genome sequence and is organized as an international consortium of computational and laboratory-based scientists working to develop and apply high-throughput approaches for detecting all sequence elements that confer biological function. The results of this pilot phase will guide future efforts to analyze the entire human genome.
Resumo:
Erythrovirus B19 infects erythrocytic progenitors, transiently interrupting erythropoiesis. In AIDS patients it causes chronic anemia amenable to treatment. We looked for evidences of B19 infection in stored bone marrow material from patients with acquired immunodeficiency syndrome. Histological sections were made from stored paraffin blocks from 33 autopsies (39 blocks) and 35 biopsies (45 blocks, 30 patients) performed from 1988 to 2002. They were examined after hematoxylin-eosin (HE) staining, immunohistochemical (IHC), and in situ hybridization. HE revealed intra-nuclear inclusion bodies ("lantern cells") suggesting B19 infection in 19 sections corresponding to 19 of 63 patients examined with this test. Seven of 78 sections subjected to immunohistochemistry were positive, corresponding to 7 of 58 patients examined with this test. Fourteen sections corresponding to 13 of the 20 HE and/or IHC positive patients were subjected to in situ hybridization, with six positives results. Among the 13 patients subjected to the three techniques, only one gave unequivocal positive results in all and was considered a true positive. The frequency of B19 infection (1/63 patients) in the material examined can be deemed low.
Resumo:
Among the molecular markers commonly used for mosquito taxonomy, the internal transcribed spacer 2 (ITS2) of the ribosomal DNA is useful for distinguishing among closely-related species. Here we review 178 GenBank accession numbers matching ITS2 sequences of Latin American anophelines. Among those, we found 105 unique sequences corresponding to 35 species. Overall the ITS2 sequences distinguish anopheline species, however, information on intraspecific and geographic variations is scarce. Intraspecific variations ranged from 0.2% to 19% and our analysis indicates that misidentification and/or sequencing errors could be responsible for some of the high values of divergence. Research in Latin American malaria vector taxonomy profited from molecular data provided by single or few field capture mosquitoes. However we propose that caution should be taken and minimum requirements considered in the design of additional studies. Future studies in this field should consider that: (1) voucher specimens, assigned to the DNA sequences, need to be deposited in collections, (2) intraspecific variations should be thoroughly evaluated, (3) ITS2 and other molecular markers, considered as a group, will provide more reliable information, (4) biological data about vector populations are missing and should be prioritized, (5) the molecular markers are most powerful when coupled with traditional taxonomic tools.
Resumo:
The horizontal transfer of Trypanosoma cruzi mitochondrial minicircle DNA to the genomes of naturally infected humans may play an important role in the pathogenesis of Chagas disease. Minicircle integrations within LINE-1 elements create the potential for foreign DNA mobility within the host genome via the machinery associated with this retrotransposon. Here we document integration of minicircle DNA fragments in clonal human macrophage cell lines and their mobilization over time. The movement of an integration event in a clonal transfected cell line was tracked at three months and three years post-infection. The minicircle sequence integrated into a LINE-1 retrotransposon; one such foreign fragment subsequently relocated to another genomic location in association with associated LINE-1 elements. The p15 locus was altered at three years as a direct effect of minicircle/LINE-1 acquisition, resulting in elimination of p15 mRNA. Here we show for the first time a molecular pathology stemming from mobilization of a kDNA/LINE-1 mutation. These genomic changes and detected transcript variations are consistent with our hypothesis that minicircle integration is a causal component of parasite-independent, autoimmune-driven lesions seen in the heart and other target tissues associated with Chagas disease.