995 resultados para DILUTED MAGNETIC SEMICONDUCTOR
Resumo:
The authors prepared (1 - x) BiFeO3 - (x)Pb(Zr0.52Ti0.48)O-3 for x <= 0.30 by sol-gel method and investigated the material's structures, magnetic and electrical properties. Detailed Rietveld analysis of X-ray diffraction data revealed that the system retains distorted rhombohedral R3c structure for x <= 0.10 but transforms to monoclinic (Cc) structure for x > 0.10. Disappearance of some Raman modes corresponding to A1 modes and the decrease in the intensities of the remaining A1 modes with increasing x in the Raman spectra, which is a clear indication of structural modification and symmetry changes brought about by PZT doping. Enhanced magnetization with PZT doping content may be attributed to the gradual change and destruction in the spin cycloid structure of BiFeO3. The leakage current density at 3.5 kV/cm was reduced by approximately three orders of magnitude by doping PZT (x = 0.30), compared with BFO ceramics. (C) 2014 AIP Publishing LLC.
Resumo:
Spin injection, manipulation and detection are the integral parts of spintronics devices and have attracted tremendous attention in the last decade. It is necessary to judiciously choose the right combination of materials to have compatibility with the existing semiconductor technology. Conventional metallic magnets were the first choice for injecting spins into semiconductors in the past. So far there is no success in using a magnetic oxide material for spin injection, which is very important for the development of oxide based spintronics devices. Here we demonstrate the electrical spin injection from an oxide magnetic material Fe3O4, into GaAs with the help of tunnel barrier MgO at room temperature using 3-terminal Hanle measurement technique. A spin relaxation time tau similar to 0.9 ns for n-GaAs at 300 K is observed along with expected temperature dependence of t. Spin injection using Fe3O4/MgO system is further established by injecting spins into p-GaAs and a tau of similar to 0.32 ns is obtained at 300 K. Enhancement of spin injection efficiency is seen with barrier thickness. In the field of spin injection and detection, our work using an oxide magnetic material establishes a good platform for the development of room temperature oxide based spintronics devices.
Resumo:
We study the effects of extended and localized potentials and a magnetic field on the Dirac electrons residing at the surface of a three-dimensional topological insulator like Bi2Se3. We use a lattice model to numerically study the various states; we show how the potentials can be chosen in a way which effectively avoids the problem of fermion doubling on a lattice. We show that extended potentials of different shapes can give rise to states which propagate freely along the potential but decay exponentially away from it. For an infinitely long potential barrier, the dispersion and spin structure of these states are unusual and these can be varied continuously by changing the barrier strength. In the presence of a magnetic field applied perpendicular to the surface, these states become separated from the gapless surface states by a gap, thereby giving rise to a quasi-one-dimensional system. Similarly, a magnetic field along with a localized potential can give rise to exponentially localized states which are separated from the surface states by a gap and thereby form a zero-dimensional system. Finally, we show that a long barrier and an impurity potential can produce bound states which are localized at the impurity, and an ``L''-shaped potential can have both bound states at the corner of the L and extended states which travel along the arms of the potential. Our work opens the way to constructing wave guides for Dirac electrons.
Resumo:
Compressive loading of the carbon nanotube (CNT) has attracted much attention due to its entangled cellular like structure (CNT foam). This report investigates the mechanical behavior of magnetorheological fluid impregnated micro porous CNT foam that has not been realized before at this scale. Compressive behavior of CNT foam is found to greatly depend on the variation in both fluid viscosity as well as magnetic field intensity. Moreover, maximum achieved stress and energy absorption in CNT foam followed a power law behavior with the magnetic field intensity. Magnetic field induced movement of both CNT and iron oxide particles along the field direction is shown to dominate compressive behavior of CNT foam over highly attractive van der Waals forces between individual CNT. Therefore, this study demonstrates a method for tailoring the mechanical behavior of the fluid impregnated CNT foam. (C) 2014 AIP Publishing LLC.
Resumo:
We address the issue of stability of recently proposed significantly super-Chandrasekhar white dwarfs. We present stable solutions of magnetostatic equilibrium models for super-Chandrasekhar white dwarfs pertaining to various magnetic field profiles. This has been obtained by self-consistently including the effects of the magnetic pressure gradient and total magnetic density in a general relativistic framework. We estimate that the maximum stable mass of magnetized white dwarfs could be more than 3 solar mass. This is very useful to explain peculiar, overluminous type Ia supernovae which do not conform to the traditional Chandrasekhar mass-limit.
Resumo:
We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of 1M(circle dot) stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude f(m) of the toroidal flux through the star increases with decreasing rotation period. The observational data can be matched if we assume the emissions to go as the power 3-4 of f(m). Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The main failure of our model is that it predicts an increase of the magnetic cycle period with increasing rotation rate, which is the opposite of what is found observationally. Much of our calculations are based on the assumption that the magnetic buoyancy makes the magnetic flux tubes rise radially from the bottom of the convection zone. Taking into account the fact that the Coriolis force diverts the magnetic flux tubes to rise parallel to the rotation axis in rapidly rotating stars, the results do not change qualitatively.
Resumo:
Three copper-azido complexes Cu-4(N-3)(8)(L-1)(2)(MeOH)(2)](n) (1), Cu-4(N-3)(8)(L-1)(2)] (2), and Cu-5(N-3)(10)(L-1)(2)](n) (3) L-1 is the imine resulting from the condensation of pyridine-2-carboxaldehyde with 2-(2-pyridyl)ethylamine] have been synthesized using lower molar equivalents of the Schiff base ligand with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of the complexes 1 and 2 contains Cu-4(II) building blocks; however, they have distinct basic and overall structures due to a small change in the bridging mode of the peripheral pair of copper atoms in the linear tetranudear structures. Interestingly, these changes are the result of changing the solvent system (MeOH/H2O to EtOH/H2O) used for the synthesis, without changing the proportions of the components (metal to ligand ratio 2:1). Using even lower proportions of the ligand, another unique complex was isolated with Cu-5(II) building units, forming a two-dimensional complex (3). Magnetic susceptibility measurements over a wide range of temperature exhibit the presence of both antiferromagnetic (very weak) and ferromagnetic exchanges within the tetranuclear unit structures. Density functional theory calculations (using B3LYP functional, and two different basis sets) have been performed on the complexes 1 and 2 to provide a qualitative theoretical interpretation of their overall magnetic behavior.
Resumo:
Cobalt copper ferrite nanopowders with composition Co1-xCu5Fe2O4 (0.0 <= x <= 0.5) was synthesized by solution combustion method. The powder X-ray diffraction studies reveal the formation of single ferrite phase with particle size of similar to 11-35 nm. Due to increase in electron density with in a material, X-ray density increase with increase of Cu2+ ions concentration. As Cu2+ ions concentration increases, saturation magnetization decreases from 38.5 to 26.7 emu g(-1). Further, the squareness ratio was found to be similar to 0.31-0.46 which was well below the typical value 1, which indicates the existence of single domain isolated ferrimagnetic samples. The dielectric and electrical modulus was studied over a frequency range of 1 Hz to 1 MHz at room temperature using the complex impedance spectroscopy technique. Impedance plots showed only one semi-circle which corresponds to the contributions of grain boundaries. The lower values of dielectric loss at higher frequency region may be quite useful for high frequency applications such as microwave devices. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Due to the ease of modification of electronic structure upon analyte adsorption, semiconductors have been the preferred materials as chemical sensors. At reduced dimension, however, the sensitivity of semiconductor-based sensors deteriorates significantly due to passivation, and often by increased band gap caused by quantum confinement. Using first-principles density functional theory combined with Boltzmann transport calculations, we demonstrate semiconductor-like sensitivity toward chemical species in ultrathin gold nanowires (AuNWs). The sensing mechanism is governed by the modification of the electronic structure of the AuNW as well as scattering of the charge carriers by analyte adsorption. Most importantly, the sensitivity exhibits a linear relationship with the electron affinities of the respective analytes. Based on this relationship, we propose an empirical parameter, which can predict an analyte-specific sensitivity of a AuNW, rendering them as effective sensors for a wide range of chemical an alytes.
Resumo:
Single crystals of LaMn0.5Co0.5O3 belonging to the ferromagnetic-insulator and distorted perovskite class were grown using a four-mirror optical float zone furnace. The as-grown crystal crystallizes into an orthorhombic Pbnm structure. The spatially resolved 2D Raman scan reveals a strain-induced distribution of transition metal (TM)-oxygen (O) octahedral deformation in the as-grown crystal. A rigorous annealing process releases the strain, thereby generating homogeneous octahedral distortion. The octahedra tilt by reducing the bond angle TM-O-TM, resulting in a decline of the exchange energy in the annealed crystal. The critical behavior is investigated from the bulk magnetization. It is found that the ground state magnetic behavior assigned to the strain-free LaMn0.5Co0.5O3 crystal is of the 3D Heisenberg kind. Strain induces mean field-like interaction in some sites, and consequently, the critical exponents deviate from the 3D Heisenberg class in the as-grown crystal. The temperature-dependent Raman scattering study reveals strong spin-phonon coupling and the existence of two magnetic ground states in the same crystal. (C) 2014 AIP Publishing LLC.
Resumo:
Ultra-small crystals of undoped and Eu-doped gadolinium oxide (Gd2O3) were synthesised by a simple, rapid microwave-assisted route, using benzyl alcohol as the reaction solvent. XRD, XPS and TEM analysis reveal that the as-prepared powder material consists of nearly monodisperse Gd2O3 nanocrystals with an average diameter of 5.2 nm. The nanocrystals show good magnetic behaviour and exhibit a larger reduction in relaxation time of water protons than the standard Gd-DTPA complex currently used in MRI imaging. Cytotoxicity studies (both concentration- and time-dependent) of the Gd2O3 nanocrystals show no adverse effect on cell viability, evidencing their high biological compatibility. Finally, Eu:Gd2O3 nanocrystals were prepared by a similar route and the red luminescence of Eu3+ activator ions was used to study the cell permeability of the nanocrystals. Red fluorescence from Eu3+ ions observed by fluorescence microscopy shows that the nanocrystals (Gd2O3 and Eu:Gd2O3) can permeate not only the cell membrane but can also enter the cell nucleus, rendering them candidate materials not only for MRI imaging but also for drug delivery when tagged or functionalized with specific drug molecules.
Resumo:
The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k x 4k CCD and have higher resolution (similar to 0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century.
Resumo:
USC-TIMIT is an extensive database of multimodal speech production data, developed to complement existing resources available to the speech research community and with the intention of being continuously refined and augmented. The database currently includes real-time magnetic resonance imaging data from five male and five female speakers of American English. Electromagnetic articulography data have also been presently collected from four of these speakers. The two modalities were recorded in two independent sessions while the subjects produced the same 460 sentence corpus used previously in the MOCHA-TIMIT database. In both cases the audio signal was recorded and synchronized with the articulatory data. The database and companion software are freely available to the research community. (C) 2014 Acoustical Society of America.
Resumo:
Employing nitronyl nitroxide lanthanide(III) complexes as metallo-ligands allowed the efficient and highly selective preparation of three series of unprecedented heterotri-spin (Cu Ln-radical) one-dimensional compounds. These 2p-3d-4f spin systems, namely Ln(3)Cu(hfac)II(NitPhOAII)41 (Ln(III)=Gd 1(Gd), Tb 1(Tb), Dy 1(Dy); NitPhOAII=2-(4'-allyloxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3- oxide), Ln(3)Cu(hfac)II(NitPhOPO4] (1-nrn=Gd 2Gd, Tb 2Tb, Dy 2(Dy), Ho 2HOf Yb 2yb; NitPhOPr= 2-(4'-propoxyphenyI)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) and Ln3Cu(hfac)II(NitPhOB441 (LnIm=Gd 3Gd, Tb 3Tb, Dy 3(Dy); NitPhOBz=2-(4'-benzyloxy- phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) involve O-bound nitronyl nitroxide radicals as bridging ligands in chain structures with a Cu-Nit-Ln-Nit-Ln-Nit-Ln-Nit] repeating unit. The dc magnetic studies show that ferromagnetic metal radical interactions take place in these heterotri-spin chain complexes, these and the next-neighbor interactions have been quantified for the Gd derivatives. Complexes 1Tb and 2Tb exhibit frequency dependence of ac magnetic susceptibilities, indicating single-chain magnet behavior.
Resumo:
This article highlights different synthetic strategies for the preparation of colloidal heterostructured nanocrystals, where at least one component of the constituent nanostructure is a semiconductor. Growth of shell material on a core nanocrystal acting as a seed for heterogeneous nucleation of the shell has been discussed. This seeded-growth technique, being one of the most heavily explored mechanisms, has already been discussed in many other excellent review articles. However, here our discussion has been focused differently based on composition (semiconductor@semiconductor, magnet@semiconductor, metal@semiconductor and vice versa), shape anisotropy of the shell growth, and synthetic methodology such as one-step vs. multi-step. The relatively less explored strategy of preparing heterostructures via colloidal sintering of different nanostructures, known as nanocrystal-fusion, has been reviewed here. The ion-exchange strategy, which has recently attracted huge research interest, where compositional tuning of nanocrystals can be achieved by exchanging either the cation or anion of a nanocrystal, has also been discussed. Specifically, controlled partial ion exchange has been critically reviewed as a viable synthetic strategy for the fabrication of heterostructures. Notably, we have also included the very recent methodology of utilizing inorganic ligands for the fabrication of heterostructured colloidal nanocrystals. This unique strategy of inorganic ligands has appeared as a new frontier for the synthesis of heterostructures and is reviewed in detail here for the first time. In all these cases, recent developments have been discussed with greater detail to add upon the existing reviews on this broad topic of semiconductor-based colloidal heterostructured nanocrystals.