905 resultados para DATA-STORAGE
Applying incremental EM to Bayesian classifiers in the learning of hyperspectral remote sensing data
Resumo:
In this paper, we apply the incremental EM method to Bayesian Network Classifiers to learn and interpret hyperspectral sensor data in robotic planetary missions. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. Many spacecraft carry spectroscopic equipment as wavelengths outside the visible light in the electromagnetic spectrum give much greater information about an object. The algorithm used is an extension to the standard Expectation Maximisation (EM). The incremental method allows us to learn and interpret the data as they become available. Two Bayesian network classifiers were tested: the Naive Bayes, and the Tree-Augmented-Naive Bayes structures. Our preliminary experiments show that incremental learning with unlabelled data can improve the accuracy of the classifier.
Resumo:
The accumulation and perpetuation of viral pathogens over generations of clonal propagation in crop species such as sweet potato, Ipomoea batatas,inevitably result in a reduction in crop yield and quality. This study was conducted at Bundaberg, Australia to compare the productivity of field-derived and pathogen-tested (PT)clones of 14 sweet potato cultivars and the yield benefits of using healthy planting materials. The field-derived clonal materials were exposed to the endemic viruses, while the PT clones were subjected to thermotherapy and meristem-tip culture to eliminate viral pathogens. The plants were indexed for viruses using nitrocellulose membrane-enzyme-linked immunosorbent assay and graft-inoculations onto Ipomoea setosa. A net benefit of 38% in storage root yield was realised from using PT materials in this study.Conversely, in a similar study previously conducted at Kerevat, Papua New Guinea (PNG), a net deficit of 36% was realised. This reinforced our finding that the response to pathogen testing was cultivar dependent and that the PNG cultivars in these studies generally exhibited increased tolerance to the endemic viruses present at the respective trial sites as manifested in their lack of response from the use of PT clones. They may be useful sources for future resistance breeding efforts. Nonetheless, the potential economic gain from using PT stocks necessitates the use of pathogen testing on virus-susceptible commercial cultivars.
Resumo:
QUT Library and the High Performance Computing and Research Support (HPC) Team have been collaborating on developing and delivering a range of research support services, including those designed to assist researchers to manage their data. QUT’s Management of Research Data policy has been available since 2010 and is complemented by the Data Management Guidelines and Checklist. QUT has partnered with the Australian Research Data Service (ANDS) on a number of projects including Seeding the Commons, Metadata Hub (with Griffith University) and the Data Capture program. The HPC Team has also been developing the QUT Research Data Repository based on the Architecta Mediaflux system and have run several pilots with faculties. Library and HPC staff have been trained in the principles of research data management and are providing a range of research data management seminars and workshops for researchers and HDR students.
Resumo:
The Queensland Department of Main Roads uses Weigh-in-Motion (WiM) devices to covertly monitor (at highway speed) axle mass, axle configurations and speed of heavy vehicles on the road network. Such data is critical for the planning and design of the road network. Some of the data appears excessively variable. The current work considers the nature, magnitude and possible causes of WiM data variability. Over fifty possible causes of variation in WiM data have been identified in the literature. Data exploration has highlighted five basic types of variability specifically: ----- • cycling, both diurnal and annual;----- • consistent but unreasonable data;----- • data jumps;----- • variations between data from opposite sides of the one road; and ----- • non-systematic variations.----- This work is part of wider research into procedures to eliminate or mitigate the influence of WiM data variability.
Resumo:
Pipe insulation between the collector and storage tank on pumped storage (commonly called split), solar water heaters can be subject to high temperatures, with a maximum equal to the collector stagnation temperature. The frequency of occurrence of these temperatures is dependent on many factors including climate, hot water demand, system size and efficiency. This paper outlines the findings of a computer modelling study to quantify the frequency of occurrence of pipe temperatures of 80 degrees Celsius or greater at the outlet of the collectors for these systems. This study will help insulation suppliers determine the suitability of their materials for this application. The TRNSYS program was used to model the performance of a common size of domestic split solar system, using both flat plate and evacuated tube, selective surface collectors. Each system was modelled at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 - Heat Water Systems - Calculation of energy consumption, and the ORER RECs calculation method. TRNSYS was used to predict the frequency of occurrence of the temperatures that the pipe insulation would be exposed to over an average year, for hot water consumption patterns specified in AS/NZS4234, and for worst case conditions in each of the climate zones. The results show; * For selectively surfaced, flat plate collectors in the hottest location (Alice Sprints) with a medium size hot water demand according to AS/NZS2434, the annual frequency of occurrence of temperatures at and above 80 degrees Celsius was 33 hours. The frequency of temperatures at and above 140 degrees Celsius was insignificant. * For evacuated tube collectors in the hottest location (Alice Springs), the annual frequency of temperatures at and above 80 degrees Celsius was 50 hours. Temperatures at and above 140 degrees Celsius were significant and were estimated to occur for more than 21 hours per year in this climate zone. Even in Melbourne, temperatures at and above 80 degrees can occur for 12 hours per year and at and above 140 degrees for 5 hours per year. * The worst case identified was for evacuated tube collectors in Alice Springs, with mostly afternoon loads in January. Under these conditions, the frequency of temperatures at and above 80 degrees Celsius was 10 hours for this month only. Temperatures at and above 140 degrees Celsius were predicted to occur for 5 hours in January.
Resumo:
Appropriate pipe insulation on domestic, pumped storage (split), solar water heating systems forms an integral part of energy conservation measures of well engineered systems. However, its importance over the life of the system is often overlooked. This study outlines the findings of computer modelling to quantify the energy and cost savings by using pipe insulation between the collector and storage tank. System sizes of 270 Litre storage tank, together with either selectively surfaced, flat plate collectors (4m2 area), or 30 evacuated tube collectors, were used. Insulation thicknesses of 13mm and 15mm, pipe runs both ways of 10, 15 and 20 metres and both electric and gas boosting of systems were all considered. The TRNSYS program was used to model the system performance at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 – Heat Water Systems – Calculation of energy consumption and the ORER RECs calculation method. The results show: Energy savings from pipe insulation are very significant, even in mild climates such as Rockhampton. Across all climates zones, savings ranged from 0.16 to 3.5GJ per system per year, or about 2 to 23 percent of the annual load. There is very little advantage in increasing the insulation thickness from 13 to 15mm. For electricity at 19c/kWh and gas at 2 c/MJ, cost savings of between $27 and $100 per year are achieved across the climate zones. Both energy and cost savings would increase in colder climates with increased system size, solar contribution and water temperatures. The pipe insulation substantially improves the solar contribution (or fraction) and Renewable Energy Certificates (RECs), as well as giving small savings in circulating pump running costs in milder climates. Solar contribution increased by up to 23 percent points and RECs by over 7 in some cases. The study highlights the need to install and maintain the integrity of appropriate pipe insulation on solar water heaters over their life time in Australia and New Zealand.
Resumo:
Objective: to assess the accuracy of data linkage across the spectrum of emergency care in the absence of a unique patient identifier, and to use the linked data to examine service delivery outcomes in an emergency department setting. Design: automated data linkage and manual data linkage were compared to determine their relative accuracy. Data were extracted from three separate health information systems: ambulance, ED and hospital inpatients, then linked to provide information about the emergency journey of each patient. The linking was done manually through physical review of records and automatically using a data linking tool (Health Data Integration) developed by the CSIRO. Match rate and quality of the linking were compared. Setting: 10, 835 patient presentations to a large, regional teaching hospital ED over a two month period (August-September 2007). Results: comparison of the manual and automated linkage outcomes for each pair of linked datasets demonstrated a sensitivity of between 95% and 99%; a specificity of between 75% and 99%; and a positive predictive value of between 88% and 95%. Conclusions: Our results indicate that automated linking provides a sound basis for health service analysis, even in the absence of a unique patient identifier. The use of an automated linking tool yields accurate data suitable for planning and service delivery purposes and enables the data to be linked regularly to examine service delivery outcomes.
Resumo:
Road safety is a major concern worldwide. Road safety will improve as road conditions and their effects on crashes are continually investigated. This paper proposes to use the capability of data mining to include the greater set of road variables for all available crashes with skid resistance values across the Queensland state main road network in order to understand the relationships among crash, traffic and road variables. This paper presents a data mining based methodology for the road asset management data to find out the various road properties that contribute unduly to crashes. The models demonstrate high levels of accuracy in predicting crashes in roads when various road properties are included. This paper presents the findings of these models to show the relationships among skid resistance, crashes, crash characteristics and other road characteristics such as seal type, seal age, road type, texture depth, lane count, pavement width, rutting, speed limit, traffic rates intersections, traffic signage and road design and so on.
Resumo:
Developing safe and sustainable road systems is a common goal in all countries. Applications to assist with road asset management and crash minimization are sought universally. This paper presents a data mining methodology using decision trees for modeling the crash proneness of road segments using available road and crash attributes. The models quantify the concept of crash proneness and demonstrate that road segments with only a few crashes have more in common with non-crash roads than roads with higher crash counts. This paper also examines ways of dealing with highly unbalanced data sets encountered in the study.
Resumo:
It is commonly accepted that wet roads have higher risk of crash than dry roads; however, providing evidence to support this assumption presents some difficulty. This paper presents a data mining case study in which predictive data mining is applied to model the skid resistance and crash relationship to search for discernable differences in the probability of wet and dry road segments having crashes based on skid resistance. The models identify an increased probability of wet road segments having crashes for mid-range skid resistance values.
Resumo:
The Comprehensive Australian Study of Entrepreneurial Emergence (CAUSEE) is a research programme that aims to uncover the factors that initiate, hinder and facilitate the process of emergence of new economic activities and organizations. It is widely acknowledged that entrepreneurship is one of the most important forces shaping changes in a country’s economic landscape (Baumol 1968; Birch 1987; Acs 1999). An understanding of the process by which new economic activity and business entities emerge is vital (Gartner 1993; Sarasvathy 2001). An important development in the study of ‘nascent entrepreneurs’ and ‘firms in gestation’ was the Panel Study of Entrepreneurial Dynamics (PSED) (Gartner et al. 2004) and its extensions in Argentina, Canada, Greece, the Netherlands, Norway and Sweden. Yet while PSED I is an important first step towards systematically studying new venture emergence, it represents just the beginning of a stream of nascent venture studies – most notably PSED II is currently being undertaken in the US (2005– 10) (Reynolds and Curtin 2008).
Resumo:
Road crashes cost world and Australian society a significant proportion of GDP, affecting productivity and causing significant suffering for communities and individuals. This paper presents a case study that generates data mining models that contribute to understanding of road crashes by allowing examination of the role of skid resistance (F60) and other road attributes in road crashes. Predictive data mining algorithms, primarily regression trees, were used to produce road segment crash count models from the road and traffic attributes of crash scenarios. The rules derived from the regression trees provide evidence of the significance of road attributes in contributing to crash, with a focus on the evaluation of skid resistance.
Resumo:
This paper describes the characterisation for airborne uses of the public mobile data communication systems known broadly as 3G. The motivation for this study was to explore how this mature public communication systems could be used for aviation purposes. An experimental system was fitted to a light aircraft to record communication latency, line speed, RF level, packet loss and cell tower identifier. Communications was established using internet protocols and connection was made to a local server. The aircraft was flown in both remote and populous areas at altitudes up to 8500ft in a region located in South East Queensland, Australia. Results show that the average airborne RF levels are better than those on the ground by 21% and in the order of -77 dbm. Latencies were in the order of 500 ms (1/2 the latency of Iridium), an average download speed of 0.48 Mb/s, average uplink speed of 0.85 Mb/s, a packet of information loss of 6.5%. The maximum communication range was also observed to be 70km from a single cell station. The paper also describes possible limitations and utility of using such a communications architecture for both manned and unmanned aircraft systems.
Resumo:
In today’s information society, electronic tools, such as computer networks for the rapid transfer of data and composite databases for information storage and management, are critical in ensuring effective environmental management. In particular environmental policies and programs for federal, state, and local governments need a large volume of up-to-date information on the quality of water, air, and soil in order to conserve and protect natural resources and to carry out meteorology. In line with this, the utilization of information and communication technologies (ICTs) is crucial to preserve and improve the quality of life. In handling tasks in the field of environmental protection a range of environmental and technical information is often required for a complex and mutual decision making in a multidisciplinary team environment. In this regard e-government provides a foundation of the transformative ICT initiative which can lead to better environmental governance, better services, and increased public participation in environmental decision- making process.
Resumo:
A Wireless Sensor Network (WSN) is a set of sensors that are integrated with a physical environment. These sensors are small in size, and capable of sensing physical phenomena and processing them. They communicate in a multihop manner, due to a short radio range, to form an Ad Hoc network capable of reporting network activities to a data collection sink. Recent advances in WSNs have led to several new promising applications, including habitat monitoring, military target tracking, natural disaster relief, and health monitoring. The current version of sensor node, such as MICA2, uses a 16 bit, 8 MHz Texas Instruments MSP430 micro-controller with only 10 KB RAM, 128 KB program space, 512 KB external ash memory to store measurement data, and is powered by two AA batteries. Due to these unique specifications and a lack of tamper-resistant hardware, devising security protocols for WSNs is complex. Previous studies show that data transmission consumes much more energy than computation. Data aggregation can greatly help to reduce this consumption by eliminating redundant data. However, aggregators are under the threat of various types of attacks. Among them, node compromise is usually considered as one of the most challenging for the security of WSNs. In a node compromise attack, an adversary physically tampers with a node in order to extract the cryptographic secrets. This attack can be very harmful depending on the security architecture of the network. For example, when an aggregator node is compromised, it is easy for the adversary to change the aggregation result and inject false data into the WSN. The contributions of this thesis to the area of secure data aggregation are manifold. We firstly define the security for data aggregation in WSNs. In contrast with existing secure data aggregation definitions, the proposed definition covers the unique characteristics that WSNs have. Secondly, we analyze the relationship between security services and adversarial models considered in existing secure data aggregation in order to provide a general framework of required security services. Thirdly, we analyze existing cryptographic-based and reputationbased secure data aggregation schemes. This analysis covers security services provided by these schemes and their robustness against attacks. Fourthly, we propose a robust reputationbased secure data aggregation scheme for WSNs. This scheme minimizes the use of heavy cryptographic mechanisms. The security advantages provided by this scheme are realized by integrating aggregation functionalities with: (i) a reputation system, (ii) an estimation theory, and (iii) a change detection mechanism. We have shown that this addition helps defend against most of the security attacks discussed in this thesis, including the On-Off attack. Finally, we propose a secure key management scheme in order to distribute essential pairwise and group keys among the sensor nodes. The design idea of the proposed scheme is the combination between Lamport's reverse hash chain as well as the usual hash chain to provide both past and future key secrecy. The proposal avoids the delivery of the whole value of a new group key for group key update; instead only the half of the value is transmitted from the network manager to the sensor nodes. This way, the compromise of a pairwise key alone does not lead to the compromise of the group key. The new pairwise key in our scheme is determined by Diffie-Hellman based key agreement.