986 resultados para Crystal engineering
Resumo:
Priceite is a calcium borate mineral and occurs as white crystals in the monoclinic pyramidal crystal system. We have used a combination of Raman spectroscopy with complimentary infrared spectroscopy and scanning electron microscopy with Energy-dispersive X-ray Spectroscopy (EDS) to study the mineral priceite. Chemical analysis shows a pure phase consisting of B and Ca only. Raman bands at 956, 974, 991, and 1019 cm−1 are assigned to the BO stretching vibration of the B10O19 units. Raman bands at 1071, 1100, 1127, 1169, and 1211 cm−1 are attributed to the BOH in-plane bending modes. The intense infrared band at 805 cm−1 is assigned to the trigonal borate stretching modes. The Raman band at 674 cm−1 together with bands at 689, 697, 736, and 602 cm−1 are assigned to the trigonal and tetrahedral borate bending modes. Raman spectroscopy in the hydroxyl stretching region shows a series of bands with intense Raman band at 3555 cm−1 with a distinct shoulder at 3568 cm−1. Other bands in this spectral region are found at 3221, 3385, 3404, 3496, and 3510 cm−1. All of these bands are assigned to water stretching vibrations. The observation of multiple bands supports the concept of water being in different molecular environments in the structure of priceite. The molecular structure of a natural priceite has been assessed using vibrational spectroscopy.
Resumo:
Ab-initio DFT calculations for the phonon dispersion (PD) and the Phonon Density Of States (PDOS) of the two isotopic forms (10B and 11B) of MgB2 demonstrate that use of a reduced symmetry super-lattice provides an improved approximation to the dynamical, phonon-distorted P6/mmm crystal structure. Construction of phonon frequency plots using calculated values for these isotopic forms gives linear trends with integer multiples of a base frequency that change in slope in a manner consistent with the isotope effect (IE). Spectral parameters inferred from this method are similar to that determined experimentally for the pure isotopic forms of MgB2. Comparison with AlB2 demonstrates that a coherent phonon decay down to acoustic modes is not possible for this metal. Coherent acoustic phonon decay may be an important contributor to superconductivity for MgB2.
Resumo:
An International Society of Sugar Cane Technologists (ISSCT) Engineering Workshop was held in Piracicaba, Brazil from 30 June to 4 July 2008. The theme of the workshop was Design, manufacturing and maintenance of sugar mill equipment. The workshop consisted of a series of technical sessions and site visits. The Brazilian sugar industry is growing rapidly. The growth has occurred as the result of the sugar industry’s position as a key provider of renewable energy in the form of ethanol and, more recently, electricity. The increased focus on electricity is seeing investment in high pressure (100 bar) boilers, cane cleaning plants that allow an increased biomass supply from trash and digesters that produce biogas from dunder. It is clear that the Brazilian sugar industry has a well defined place in the country’s future. The ISSCT workshop provided a good opportunity to gain information from equipment suppliers and discuss new technology that may have application in Australia. The new technologies of interest included IMCO sintered carbide shredder hammer tips, Fives Cail MillMax mills, planetary mill gearboxes, Bosch Projects chainless diffusers, Fives Cail Zuka centrifugals and Vaperma Siftek membrane systems.
Resumo:
This project has extended the knowledge in the hydrothermal synthesis of copper zinc tin sulphide (CZTS) semiconductor material which is regarded as one of the most promising light absorbing material for PV technologies. The investigation of various reaction parameters on the controlled synthesis of CZTS compound has provided important insight into the formation mechanism as well as the crystal growth behaviour of the material. CZTS nanocrystals with different crystal structure and particle size were synthesised throughout this project. The growth mechanism of CZTS crystals through a high temperature annealing treatment was also explored.
Resumo:
Anthropogenic elemental mercury (Hg0) emission is a serious worldwide environmental problem due to the extreme toxicity of the heavy metal to humans, plants and wildlife. Development of an accurate and cheap microsensor based online monitoring system which can be integrated as part of Hg0 removal and control processes in industry is still a major challenge. Here, we demonstrate that forming Au nanospike structures directly onto the electrodes of a quartz crystal microbalance (QCM) using a novel electrochemical route results in a self-regenerating, highly robust, stable, sensitive and selective Hg0 vapor sensor. The data from a 127 day continuous test performed in the presence of volatile organic compounds and high humidity levels, showed that the sensor with an electrodeposted sensitive layer had 260% higher response magnitude, 3.4 times lower detection limit (,22 mg/m3 or ,2.46 ppbv) and higher accuracy (98% Vs 35%) over a Au control based QCM (unmodified) when exposed to a Hg0 vapor concentration of 10.55 mg/m3 at 1016C. Statistical analysis of the long term data showed that the nano-engineered Hg0 sorption sites on the developed Au nanospikes sensitive layer play a critical role in the enhanced sensitivity and selectivity of the developed sensor towards Hg0 vapor.
Resumo:
Heteroleptic complexes of the type \[RuL2L′](PF6)2 (L, L′ = combinations of 1,10-phenanthroline (phen) and 2,2′-bipyridine (bipy)) were found to cocrystallize with \[Ni(phen)3](PF6)2 to produce cocrystals of \[Ni(phen)3]x\[RuL2L′]1–x(PF6)2. In this report we show that the ability of the complexes to cocrystallize is influenced by the number of common ligands between complexes in solution. Supramolecular selection is a phenomenon caused by molecular recognition through which cocrystals can grow from the same solution but contain different ratios of the molecular components. It was found that systems where L = phen displayed less supramolecular selection than systems where L = bipy. With increasing supramolecular selection, the composition of cocrystals was found to vary significantly from the initial relative concentration in the cocrystallizing solution, and therefore it was increasingly difficult to control the final composition of the resultant cocrystals. Consequently, modulation of concentration-dependent properties such as phase was also found to be less predictable with increasing supramolecular selection. Notwithstanding the complication afforded by the presence of supramolecular selection, our results reaffirm the robustness of the \[M(phen)3](PF6)2 structure because it was maintained even when ca. 90% of the complexes in the cocrystals were \[Ru(phen)(bipy)2](PF6)2, which in its pure form is not isomorphous with \[M(phen)3](PF6)2. Experiments between complexes without common ligands, i.e., \[Ru(bipy)3](PF6)2 cocrystallized with \[Ni(phen)3](PF6)2, were found to approach the limit to which molecular recognition processes can be confused into cocrystallizing different molecules to form single cocrystals. For these systems the result was the formation of block-shaped crystals skewered by a needle-shaped crystals.
Resumo:
When crystallization screening is conducted many outcomes are observed but typically the only trial recorded in the literature is the condition that yielded the crystal(s) used for subsequent diffraction studies. The initial hit that was optimized and the results of all the other trials are lost. These missing results contain information that would be useful for an improved general understanding of crystallization. This paper provides a report of a crystallization data exchange (XDX) workshop organized by several international large-scale crystallization screening laboratories to discuss how this information may be captured and utilized. A group that administers a significant fraction of the worlds crystallization screening results was convened, together with chemical and structural data informaticians and computational scientists who specialize in creating and analysing large disparate data sets. The development of a crystallization ontology for the crystallization community was proposed. This paper (by the attendees of the workshop) provides the thoughts and rationale leading to this conclusion. This is brought to the attention of the wider audience of crystallographers so that they are aware of these early efforts and can contribute to the process going forward. © 2012 International Union of Crystallography All rights reserved.