955 resultados para Cppb Gene Based Assays


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particulate nanostructures are increasingly used for analytical purposes. Such particles are often generated by chemical synthesis from non-renewable raw materials. Generation of uniform nanoscale particles is challenging and particle surfaces must be modified to make the particles biocompatible and water-soluble. Usually nanoparticles are functionalized with binding molecules (e.g., antibodies or their fragments) and a label substance (if needed). Overall, producing nanoparticles for use in bioaffinity assays is a multistep process requiring several manufacturing and purification steps. This study describes a biological method of generating functionalized protein-based nanoparticles with specific binding activity on the particle surface and label activity inside the particles. Traditional chemical bioconjugation of the particle and specific binding molecules is replaced with genetic fusion of the binding molecule gene and particle backbone gene. The entity of the particle shell and binding moieties are synthesized from generic raw materials by bacteria, and fermentation is combined with a simple purification method based on inclusion bodies. The label activity is introduced during the purification. The process results in particles that are ready-to-use as reagents in bioaffinity. Apoferritin was used as particle body and the system was demonstrated using three different binding moieties: a small protein, a peptide and a single chain Fv antibody fragment that represents a complex protein including disulfide bridge.If needed, Eu3+ was used as label substance. The results showed that production system resulted in pure protein preparations, and the particles were of homogeneous size when visualized with transmission electron microscopy. Passively introduced label was stably associated with the particles, and binding molecules genetically fused to the particle specifically bound target molecules. Functionality of the particles in bioaffinity assays were successfully demonstrated with two types of assays; as labels and in particle-enhanced agglutination assay. This biological production procedure features many advantages that make the process especially suited for applications that have frequent and recurring requirements for homogeneous functional particles. The production process of ready, functional and watersoluble particles follows principles of “green chemistry”, is upscalable, fast and cost-effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive malignant melanoma (MM) is an aggressive tumor with no curative therapy available in advanced stages. Nuclear corepressor (NCoR) is an essential regulator of gene transcription, and its function has been found deregulated in different types of cancer. In colorectal cancer cells, loss of nuclear NCoR is induced by Inhibitor of kappa B kinase (IKK) through the phosphorylation of specific serine residues. We here investigate whether NCoR function impacts in MM, which might have important diagnostic and prognostic significance. By IHC, we here determined the subcellular distribution of NCoR in a cohort of 63 primary invasive MM samples, and analyzed its possible correlation with specific clinical parameters. We therefore used a microarray-based strategy to determine global gene expression differences in samples with similar tumor stage, which differ in the presence of cytoplasmic or nuclear NCoR. We found that loss of nuclear NCoR results in upregulation of a specific cancer-related genetic signature, and is significantly associated with MM progression. Inhibition of IKK activity in melanoma cells reverts NCoR nuclear distribution and specific NCoR-regulated gene transcription. Analysis of public database demonstrated that inactivating NCoR mutations are highly prevalent in MM, showing features of driver oncogene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we report the validation of a derivatization method that makes use of fluorescamine as a selective reactant for the quantitative analysis of peptide and protein drugs in the dissolution profile from depot formulations. Typical current methods require separation of the nano/microparticles and time-consuming chromatographic runs. In this study we report a method which can be conducted without the need for complete physical separation of the particles or removal of the unreacted probe. This method was used here for the analysis of the release profile of octreotide in a depot formulation, with results in excellent agreement with reported chromatographic assays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RP-HPLC based analytical method for use in both quality control of green tea in a semisolid formulation and for in vitro drug release assays was developed and validated. The method was precise (CV < 5%), accurate (recovery between 98% and 102%), linear (R² > 0.99), robust, and specific for the determination of epigallocatechin 3-gallate (EGCG), caffeine (CAF), and gallic acid (GA). In a diffusion cell chamber, the release rate of EGCG was 8896.01 µg cm-2. This data showed that EGCG will be able to exert its systemic activity when delivered though the transdermal formulation, due to its good flux rates with the synthetic membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polysialic acid is a carbohydrate polymer which consist of N-acetylneuraminic acid units joined by alpha2,8-linkages. It is developmentally regulated and has an important role during normal neuronal development. In adults, it participates in complex neurological processes, such as memory, neural plasticity, tumor cell growth and metastasis. Polysialic acid also constitutes the capsule of some meningitis and sepsis-causing bacteria, such as Escherichia coli K1, group B meningococci, Mannheimia haemolytica A2 and Moraxella nonliquefaciens. Polysialic acid is poorly immunogenic; therefore high affinity antibodies against it are difficult to prepare, thus specific and fast detection methods are needed. Endosialidase is an enzyme derived from the E. coli K1 bacteriophage, which specifically recognizes and degrades polysialic acid. In this study, a novel detection method for polysialic acid was developed based on a fusion protein of inactive endosialidase and the green fluorescent protein. It utilizes the ability of the mutant, inactive endosialidase to bind but not cleave polysialic acid. Sequencing of the endosialidase gene revealed that amino acid substitutions near the active site of the enzyme differentiate the active and inactive forms of the enzyme. The fusion protein was applied for the detection of polysialic acid in bacteria and neuroblastoma. The results indicate that the fusion protein is a fast, sensitive and specific reagent for the detection of polysialic acid. The use of an inactive enzyme as a specific molecular tool for the detection of its substrate represents an approach which could potentially find wide applicability in the specific detection of diverse macromolecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac troponins (cTns) are the recommended biochemical markers in the diagnosis of myocardial infarction (MI). They are very sensitive and tissue-specific but are limited by their delayed appearance in the circulation. Biochemical markers with more rapid release kinetics, e.g. myoglobin and especially heart-type fatty acid-binding protein (H-FABP), have been used to enhance the early identification of MI. The implementation of cTns into clinical practice has shown that cardiomyocyte injury occurs in many other clinical conditions than MI. The aim of this study was to evaluate the impact of modern and highly sensitive cTnI assays on the early diagnosis of MI. In a patient cohort with suspected MI, such a sensitive cTnI assay enhanced the early diagnostic accuracy when compared to a less sensitive cTnI assay and to myoglobin. When compared to H-FABP during the early hours after symptom onset, the sensitive cTnI assay showed at least similar and, after 6 hours, superior diagnostic accuracy. A positive cTnI test result had superior prognostic value when compared to H-FABP, even among early presenters. The prognostic value of cTn in acute heart failure (AHF) was evaluated in 364 patients who participated in the FINN-AKVA study. The patients presented with AHF but no acute coronary syndrome (ACS). Up to half of the patients had elevated cTn levels which were associated with higher 6-month mortality. The magnitude of cTn elevation was directly proportional to mortality. Finally, the clinical spectrum of cTnI elevations was evaluated in 991 cTnI positive emergency department (ED) patients. 83% of the patients had MI and 17% had cTnI elevation due to other clinical conditions. The latter patient group was characterized by lower absolute cTnI levels and – importantly – higher in-hospital mortality when compared to the MI patients. In conclusion, the use of a highly sensitive cTnI assay enhances the early diagnostic accuracy and risk stratification in suspected MI patients. Cardiac troponin elevations are highly prevalent also in other acute clinical conditions and indicate an adverse outcome of these patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compared three mild and three severe strains of Papaya ringspot virus - type W (PRSV-W), based on nucleotide and amino acid sequences of the capsid protein (CP) gene. The CP nucleotide sequences of the mild strains shared 98% to 100% identity. When compared to the severe strains the identity ranged from 93% to 95%, except in the case of PRSV-W-2R, which resulted from reversion of the mild strains PRSV-W-2. The CP sequence of the reverting strain showed 100% identity with the sequence of its parental strain. An insertion of six nucleotides in the core region of the CP gene, which reflected the addition of two amino acids (Asn and Asp) in the deduced sequence of the protein, was found in all mild strains. These sequence comparisons were used to design strain-specific primers that were used to specifically amplify regions for either the mild or severe strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grapevine leafroll-associated virus 3 (GLRaV-3), the main viral species of the grapevine leafroll complex, causes yield and quality reduction in grapes (Vitis spp.). The coat protein gene was RT-PCR-amplified from total RNA extracted from infected grapevine leaves and the amplified fragment was cloned and completely sequenced. The fragment was subsequently subcloned into the pRSET-C expression vector. The recombinant plasmid was used to transform Escherichia coli BL21:DE3 and express the capsid protein. The coat protein, fused to a 6 His-tag, was purified by affinity chromatography using an Ni-NTA resin. The identity of the purified protein was confirmed by SDS-PAGE and Western blot. The in vitro-expressed protein was quantified and used for rabbit immunizations. The antiserum was shown to be sensitive and specific for the detection of GLRaV-3 in grapevine extracts in Western blot and DAS-ELISA assays, with no unspecific or heterologous reactions against other non-serologically related viruses being observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene therapy aims to treat diseases by introducing genetic material to the diseased tissue. For cancer treatment it is important to destroy cancerous cells; this can be achieved by introducing a gene, which induces cell death or by allowing viral vectors to replicate, which also results in destruction of cancerous cells. For cardiac diseases the approach is more like the former, except the gene produces beneficial effects, like angiogenesis. Adenoviruses have many beneficial qualities, which make the virus an interesting gene therapy vector; it can be produced relatively easily, its manipulation is quite easy and it has naturally broad tropism. By removing or replacing certain genes in the adenoviral genome, it can be made non-replicative. In this study, adenoviral receptor expression patterns were characterized in both head and neck squamous cell carcinoma and the human heart. Adenovirus serotype 5 receptor expression in head and neck cancer cell lines was found to be highly variable between cell lines and overall at lower levels, while Ad35 receptor expression was more uniform and at higher levels in all analyzed cell lines. It was also shown that a hybrid virus Ad5/35 is able to infect cells refractory to Ad5, which correlates with receptor expression in these cells. Furthermore, this difference in infection properties extends to cell killing efficiency in case of conditionally replicative viruses. Expression levels of adenoviral receptors CAR, CD46, CD86 and αv-integrins were found to be high both in normal and dilated cardiomyopathy heart tissue. The receptor levels also correlate with transduction efficiency after intracardiac injection. Ad5 showed superior transduction ability compared with Ad5/35, but evoked also a more profound immune reaction when administered this way. Adenoviral gene therapy vectors are the most used delivery vehicles in clinical trials to date. These vectors have proven to be well tolerated and positive results have been obtained when combined with traditional treatments, although poor transduction efficiency has often been reported due to low-level expression of viral receptors on target cells. In spite of this, the results are encouraging and merit for further research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of breast cancer is regulated by hormones and growth factors. Recently, aberrant fibroblast growth factor (FGF) signalling has been strongly implicated in promoting the progression of breast cancer and is thought to have a role in the development of endocrine resistant disease. FGFs mediate their auto- and paracrine signals through binding to FGF receptors 1-4 (FGFR1-4) and their isoforms. Specific targets of FGFs in breast cancer cells and the differential role of FGFRs, however, are poorly described. FGF-8 is expressed at elevated levels in breast cancer, and it has been shown to act as an angiogenic, growth promoting factor in experimental models of breast cancer. Furthermore, it plays an important role in mediating androgen effects in prostate cancer and in some breast cancer cell lines. We aimed to study testosterone (Te) and FGF-8 regulated genes in Shionogi 115 (S115) breast cancer cells, characterise FGF-8 activated intracellular signalling pathways and clarify the role of FGFR1, -2 and -3 in these cells. Thrombospondin-1 (TSP-1), an endogenous inhibitor of angiogenesis, was recognised as a Te and FGF-8 regulated gene. Te repression of TSP-1 was androgen receptor (AR)-dependent. It required de novo protein synthesis, but it was independent of FGF-8 expression. FGF-8, in turn, downregulated TSP-1 transcription by activating the ERK and PI3K pathways, and the effect could be reversed by specific kinase inhibitors. Differential FGFR1-3 action was studied by silencing each receptor by shRNA expression in S115 cells. FGFR1 expression was a prerequisite for the growth of S115 tumours, whereas FGFR2 expression alone was not able to promote tumour growth. High FGFR1 expression led to a growth advantage that was associated with strong ERK activation, increased angiogenesis and reduced apoptosis, and all of these effects could be reversed by an FGFR inhibitor. Taken together, the results of this thesis show that FGF-8 and FGFRs contribute strongly to the regulation of the growth and angiogenesis of experimental breast cancer and support the evidence for FGF-FGFR signalling as one of the major players in breast cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-throughput screening of cellular effects of RNA interference (RNAi) libraries is now being increasingly applied to explore the role of genes in specific cell biological processes and disease states. However, the technology is still limited to specialty laboratories, due to the requirements for robotic infrastructure, access to expensive reagent libraries, expertise in high-throughput screening assay development, standardization, data analysis and applications. In the future, alternative screening platforms will be required to expand functional large-scale experiments to include more RNAi constructs, allow combinatorial loss-of-function analyses (e.g. genegene or gene-drug interaction), gain-of-function screens, multi-parametric phenotypic readouts or comparative analysis of many different cell types. Such comprehensive perturbation of gene networks in cells will require a major increase in the flexibility of the screening platforms, throughput and reduction of costs. As an alternative for the conventional multi-well based high-throughput screening -platforms, here the development of a novel cell spot microarray method for production of high density siRNA reverse transfection arrays is described. The cell spot microarray platform is distinguished from the majority of other transfection cell microarray techniques by the spatially confined array layout that allow highly parallel screening of large-scale RNAi reagent libraries with assays otherwise difficult or not applicable to high-throughput screening. This study depicts the development of the cell spot microarray method along with biological application examples of high-content immunofluorescence and phenotype based cancer cell biological analyses focusing on the regulation of prostate cancer cell growth, maintenance of genomic integrity in breast cancer cells, and functional analysis of integrin protein-protein interactions in situ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to demonstrate the wide applicability of the novel photoluminescent labels called upconverting phosphors (UCPs) in proximity-based bioanalytical assays. The exceptional features of the lanthanide-doped inorganic UCP compounds stem from their capability for photon upconversion resulting in anti-Stokes photoluminescence at visible wavelengths under near-infrared (NIR) excitation. Major limitations related to conventional photoluminescent labels are avoided, rendering the UCPs a competitive next-generation label technology. First, the background luminescence is minimized due to total elimination of autofluorescence. Consequently, improvements in detectability are expected. Second, at the long wavelengths (>600 nm) used for exciting and detecting the UCPs, the transmittance of sample matrixes is significantly greater in comparison with shorter wavelengths. Colored samples are no longer an obstacle to the luminescence measurement, and more flexibility is allowed even in homogeneous assay concepts, where the sample matrix remains present during the entire analysis procedure, including label detection. To transform a UCP particle into a biocompatible label suitable for bioanalytical assays, it must be colloidal in an aqueous environment and covered with biomolecules capable of recognizing the analyte molecule. At the beginning of this study, only UCP bulk material was available, and it was necessary to process the material to submicrometer-sized particles prior to use. Later, the ground UCPs, with irregular shape, wide size-distribution and heterogeneous luminescence properties, were substituted by a smaller-sized spherical UCP material. The surface functionalization of the UCPs was realized by producing a thin hydrophilic coating. Polymer adsorption on the UCP surface is a simple way to introduce functional groups for bioconjugation purposes, but possible stability issues encouraged us to optimize an optional silica-encapsulation method which produces a coating that is not detached in storage or assay conditions. An extremely thin monolayer around the UCPs was pursued due to their intended use as short-distance energy donors, and much attention was paid to controlling the thickness of the coating. The performance of the UCP technology was evaluated in three different homogeneous resonance energy transfer-based bioanalytical assays: a competitive ligand binding assay, a hybridization assay for nucleic acid detection and an enzyme activity assay. To complete the list, a competitive immunoassay has been published previously. Our systematic investigation showed that a nonradiative energy transfer mechanism is indeed involved, when a UCP and an acceptor fluorophore are brought into close proximity in aqueous suspension. This process is the basis for the above-mentioned homogeneous assays, in which the distance between the fluorescent species depends on a specific biomolecular binding event. According to the studies, the submicrometer-sized UCP labels allow versatile proximity-based bioanalysis with low detection limits (a low-nanomolar concentration for biotin, 0.01 U for benzonase enzyme, 0.35 nM for target DNA sequence).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The drug discovery process is facing new challenges in the evaluation process of the lead compounds as the number of new compounds synthesized is increasing. The potentiality of test compounds is most frequently assayed through the binding of the test compound to the target molecule or receptor, or measuring functional secondary effects caused by the test compound in the target model cells, tissues or organism. Modern homogeneous high-throughput-screening (HTS) assays for purified estrogen receptors (ER) utilize various luminescence based detection methods. Fluorescence polarization (FP) is a standard method for ER ligand binding assay. It was used to demonstrate the performance of two-photon excitation of fluorescence (TPFE) vs. the conventional one-photon excitation method. As result, the TPFE method showed improved dynamics and was found to be comparable with the conventional method. It also held potential for efficient miniaturization. Other luminescence based ER assays utilize energy transfer from a long-lifetime luminescent label e.g. lanthanide chelates (Eu, Tb) to a prompt luminescent label, the signal being read in a time-resolved mode. As an alternative to this method, a new single-label (Eu) time-resolved detection method was developed, based on the quenching of the label by a soluble quencher molecule when displaced from the receptor to the solution phase by an unlabeled competing ligand. The new method was paralleled with the standard FP method. It was shown to yield comparable results with the FP method and found to hold a significantly higher signal-tobackground ratio than FP. Cell-based functional assays for determining the extent of cell surface adhesion molecule (CAM) expression combined with microscopy analysis of the target molecules would provide improved information content, compared to an expression level assay alone. In this work, immune response was simulated by exposing endothelial cells to cytokine stimulation and the resulting increase in the level of adhesion molecule expression was analyzed on fixed cells by means of immunocytochemistry utilizing specific long-lifetime luminophore labeled antibodies against chosen adhesion molecules. Results showed that the method was capable of use in amulti-parametric assay for protein expression levels of several CAMs simultaneously, combined with analysis of the cellular localization of the chosen adhesion molecules through time-resolved luminescence microscopy inspection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resonance energy transfer (RET) is a non-radiative transfer of the excitation energy from the initially excited luminescent donor to an acceptor. The requirements for the resonance energy transfer are: i) the spectral overlap between the donor emission spectrum and the acceptor absorption spectrum, ii) the close proximity of the donor and the acceptor, and iii) the suitable relative orientations of the donor emission and the acceptor absorption transition dipoles. As a result of the RET process the donor luminescence intensity and the donor lifetime are decreased. If the acceptor is luminescent, a sensitized acceptor emission appears. The rate of RET depends strongly on the donor–acceptor distance (r) and is inversely proportional to r6. The distance dependence of RET is utilized in binding assays. The proximity requirement and the selective detection of the RET-modified emission signal allow homogeneous separation free assays. The term lanthanide-based RET is used when luminescent lanthanide compounds are used as donors. The long luminescence lifetimes, the large Stokes’ shifts and the intense, sharply-spiked emission spectra of the lanthanide donors offer advantages over the conventional organic donor molecules. Both the organic lanthanide chelates and the inorganic up-converting phosphor (UCP) particles have been used as donor labels in the RET based binding assays. In the present work lanthanide luminescence and lanthanide-based resonance energy transfer phenomena were studied. Luminescence lifetime measurements had an essential role in the research. Modular frequency-domain and time-domain luminometers were assembled and used successfully in the lifetime measurements. The frequency-domain luminometer operated in the low frequency domain ( 100 kHz) and utilized a novel dual-phase lock-in detection of the luminescence. One of the studied phenomena was the recently discovered non-overlapping fluorescence resonance energy transfer (nFRET). The studied properties were the distance and temperature dependences of nFRET. The distance dependence was found to deviate from the Förster theory and a clear temperature dependence was observed whereas conventional RET was completely independent of the temperature. Based on the experimental results two thermally activated mechanisms were proposed for the nFRET process. The work with the UCP particles involved the measurement of the luminescence properties of the UCP particles synthesized in our laboratory. The goal of the UCP particle research is to develop UCP donor labels for binding assays. In the present work the effect of the dopant concentrations and the core–shell structure on the total up-conversion luminescence intensity, the red–green emission ratio, and the luminescence lifetime was studied. Also the non-radiative nature of the energy transfer from the UCP particle donors to organic acceptors was demonstrated for the first time in aqueous environment and with a controlled donor–acceptor distance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alkoholberusning är en av de starkaste riskfaktorerna för aggressivt beteende. Alla individer blir dock inte aggressiva under alkoholberusning. I sin doktorsavhandling undersökte Johansson ifall individens genetiska uppsättning kan förklara skillnader i vem som reagerar på alkohol med ökat aggressivt beteende och ilska och vem som inte gör det. Resultaten visade att individer som är bärare av en viss variant av genen som kodar för oxytocinets receptorer är i högre grad benägna att uppvisa aggressivt beteende än andra när de är alkoholberusade. Sambandet mellan alkohol och ilska påverkades även av individens genetiska uppsättning av två oxytocinreceptorgenvarianter, vilket antyder att dessa genvarianter även påverkar benägenheten att känna ilska under alkoholberusning. Oxytocinet, som fungerar både som ett hormon och en neurotransmittor, har i tidigare studier visats ha breda effekter på sociala förmågor hos människan, såsom förmåga till igenkännande av andras känslouttryck. Resultaten är de första att hos människan experimentellt påvisa att vissa individer beter sig mer aggressivt än andra när de är berusade, beroende på individens genetiska uppsättning. ”Det är viktigt att komma ihåg att genens effekt i det här fallet inte är av en sådan natur att den direkt och ofrånkomligen orsakar aggressivt beteende. Med andra ord är det orimligt i detta fall att tänka att en individ skulle tillmätas ansvarsfrihet i exempelvis ett våldsbrottmål om hon bär på en viss variant av denna gen”, påpekar Johansson. Oxytocinreceptorgenens effekter analyserades i två olika urval. I ett experimentellt upplägg indelades 116 män slumpässigt i två grupper: en grupp som tilldelades alkoholhaltiga drycker, och en kontrollgrupp som tilldelades alkoholfria drycker. Aggressivt beteende mättes med ett laboratorietest där försökspersonerna fick bestraffa en fiktiv motspelare genom att spela upp motbjudande ljud för denne. Resultaten replikerades i ett populationsbaserat urval av män och kvinnor (n = 3755) vilka besvarat frågor om deras aggressiva beteenden, ilska, och alkoholanvändning.