947 resultados para Cortical and cerebellar astroglia
Resumo:
MAP5, a microtubule-associated protein characteristic of differentiating neurons, was studied in the developing visual cortex and corpus callosum of the cat. In juvenile cortical tissue, during the first month after birth, MAP5 is present as a protein doublet of molecular weights of 320 and 300 kDa, defined as MAP5a and MAP5b, respectively. MAP5a is the phosphorylated form. MAP5a decreases two weeks after birth and is no longer detectable at the beginning of the second postnatal month; MAP5b also decreases after the second postnatal week but more slowly and it is still present in the adult. In the corpus callosum only MAP5a is present between birth and the end of the first postnatal month. Afterwards only MAP5b is present but decreases in concentration more than 3-fold towards adulthood. Our immunocytochemical studies show MAP5 in somata, dendrites and axonal processes of cortical neurons. In adult tissue it is very prominent in pyramidal cells of layer V. In the corpus callosum MAP5 is present in axons at all ages. There is strong evidence that MAP5a is located in axons while MAP5b seems restricted to somata and dendrites until P28, but is found in callosal axons from P39 onwards. Biochemical experiments indicate that the state of phosphorylation of MAP5 influences its association with structural components. After high speed centrifugation of early postnatal brain tissue, MAP5a remains with pellet fractions while most MAP5b is soluble. In conclusion, phosphorylation of MAP5 may regulate (1) its intracellular distribution within axons and dendrites, and (2) its ability to interact with other subcellular components.
Resumo:
M. Santos, G. Gold, E. Kövari, F. R. Herrmann, P. R. Hof, C. Bouras and P. Giannakopoulos (2010) Neuropathology and Applied Neurobiology36, 661-672 Neuropathological analysis of lacunes and microvascular lesions in late-onset depression Aims: Previous neuropathological studies documented that small vascular and microvascular pathology is associated with cognitive decline. More recently, we showed that thalamic and basal ganglia lacunes are associated with post-stroke depression and may affect emotional regulation. The present study examines whether this is also the case for late-onset depression. Methods: We performed a detailed analysis of small macrovascular and microvascular pathology in the post mortem brains of 38 patients with late-onset major depression (LOD) and 29 healthy elderly controls. A clinical diagnosis of LOD was established while the subjects were alive using the DSM-IV criteria. Additionally, we retrospectively reviewed all charts for the presence of clinical criteria of vascular depression. Neuropathological evaluation included bilateral semi-quantitative assessment of lacunes, deep white matter and periventricular demyelination, cortical microinfarcts and both focal and diffuse gliosis. The association between vascular burden and LOD was investigated using Fisher's exact test and univariate and multivariate logistic regression models. Results: Neither the existence of lacunes nor the presence of microvascular ischaemic lesions was related to occurrence of LOD. Similarly, there was no relationship between vascular lesion scores and LOD. This was also the case within the subgroup of LOD patients fulfilling the clinical criteria for vascular depression. Conclusions: Our results challenge the vascular depression hypothesis by showing that neither deep white matter nor periventricular demyelination is associated with LOD. In conjunction with our previous observations in stroke patients, they also imply that the impact of lacunes on mood may be significant solely in the presence of acute brain compromise.
Resumo:
The high complexity of cortical convolutions in humans is very challenging both for engineers to measure and compare it, and for biologists and physicians to understand it. In this paper, we propose a surface-based method for the quantification of cortical gyrification. Our method uses accurate 3-D cortical reconstruction and computes local measurements of gyrification at thousands of points over the whole cortical surface. The potential of our method to identify and localize precisely gyral abnormalities is illustrated by a clinical study on a group of children affected by 22q11 Deletion Syndrome, compared to control individuals.
Resumo:
The occurrence of microvascular and small macrovascular lesions and Alzheimer's disease (AD)-related pathology in the aging human brain is a well-described phenomenon. Although there is a wide consensus about the relationship between macroscopic vascular lesions and incident dementia, the cognitive consequences of the progressive accumulation of these small vascular lesions in the human brain are still a matter of debate. Among the vast group of small vessel-related forms of ischemic brain injuries, the present review discusses the cognitive impact of cortical microinfarcts, subcortical gray matter and deep white matter lacunes, periventricular and diffuse white matter demyelinations, and focal or diffuse gliosis in old age. A special focus will be on the sub-types of microvascular lesions not detected by currently available neuroimaging studies in routine clinical settings. After providing a critical overview of in vivo data on white matter demyelinations and lacunes, we summarize the clinicopathological studies performed by our center in large cohorts of individuals with microvascular lesions and concomitant AD-related pathology across two age ranges (the younger old, 65-85 years old, versus the oldest old, nonagenarians and centenarians). In conjunction with other autopsy datasets, these observations fully support the idea that cortical microinfarcts are the only consistent determinant of cognitive decline across the entire spectrum from pure vascular cases to cases with combined vascular and AD lesion burden.
Resumo:
In cortical collecting ducts (CCDs) perfused in vitro, inhibiting the epithelial Na(+) channel (ENaC) reduces Cl(-) absorption. Since ENaC does not transport Cl(-), the purpose of this study was to determine how ENaC modulates Cl(-) absorption. Thus, Cl(-) absorption was measured in CCDs perfused in vitro that were taken from mice given aldosterone for 7 days. In wild-type mice, we observed no effect of luminal hydrochlorothiazide on either Cl(-) absorption or transepithelial voltage (V(T)). However, application of an ENaC inhibitor [benzamil (3 μM)] to the luminal fluid or application of a Na(+)-K(+)-ATPase inhibitor to the bath reduced Cl(-) absorption by ∼66-75% and nearly obliterated lumen-negative V(T). In contrast, ENaC inhibition had no effect in CCDs from collecting duct-specific ENaC-null mice (Hoxb7:CRE, Scnn1a(loxlox)). Whereas benzamil-sensitive Cl(-) absorption did not depend on CFTR, application of a Na(+)-K(+)-2Cl(-) cotransport inhibitor (bumetanide) to the bath or ablation of the gene encoding Na(+)-K(+)-2Cl(-) cotransporter 1 (NKCC1) blunted benzamil-sensitive Cl(-) absorption, although the benzamil-sensitive component of V(T) was unaffected. In conclusion, first, in CCDs from aldosterone-treated mice, most Cl(-) absorption is benzamil sensitive, whereas thiazide-sensitive Cl(-) absorption is undetectable. Second, benzamil-sensitive Cl(-) absorption occurs by inhibition of ENaC, possibly due to elimination of lumen-negative V(T). Finally, benzamil-sensitive Cl(-) flux occurs, at least in part, through transcellular transport through a pathway that depends on NKCC1.
Resumo:
Humans spend one third of their life sleeping, then we could raise the basic question: Why do we sleep? Despite the fact that we still don't fully understand its function, we made much progress in understanding at different levels how sleep is regulated. One model suggests that sleep is regulated by two processes: a homeostatic process that tracks the need for sleep and by a circadian rhythm that determines the preferred time-of-day sleep occurs. At the molecular level circadian rhythms are a property of interlocking transcriptional regula-tors referred to as clock genes. The heterodimeric transcription factors BMAL1::CLOCK/NPAS2 drive the transcription of many target genes including the clock genes Cryptochome1 (Cry1), Cry2, Period1 (Per1), and Per2. The encoded CRY/PER proteins are transcriptional inhibitors of BMAL1::CLOCK/NPAS2 thereby providing negative feedback to their own transcription. These genes seem, however, also involved in sleep homeostasis because the brain expression of clock genes, es-pecially that of Per2, increase as a function of time-spent-awake and because mice lacking clock genes display altered sleep homeostasis. The aim of first part of my doctoral work has been to advance our understanding the link that exists between sleep homeostasis and circadian rhythms investigating a possible mechanism by which sleep deprivation could alter clock gene expression by quantifying DNA-binding of the core-clock genes BMAL1, CLOCK and NPAS2 to their target chromatin loci including the E-box enhancers of the Per2 promoter. We made use of chromatin immunoprecipitation (ChIP) and quantitative poly-merase chain reaction (qPCR) to show that DNA-binding of CLOCK and BMAL1 to their target genes changes as a function of time-of-day in both liver and cerebral cortex. We then performed a 6h sleep deprivation (SD) and observed a significant decrease in DNA-binding of CLOCK and BMAL1 to Dbp. This is consistent with a decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was similarly decreased following SD. However, SD has been previously shown to in-crease Per2 expression in the cortex which seems paradoxical. Our results demonstrate that sleep-wake history can affect the molecular clock machinery directly at the level of the chromatin thereby altering the cortical expression of Dbp and Per2, and likely other targets. However, the precise dy-namic relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive. The second aim of my doctoral work has been to perform an in depth characterization of cir-cadian rhythmicity, sleep architecture, analyze the response to SD in full null-Per2 knock-out (Per2-/-) mice, and Per1-/- mice, as well as their double knock-out offspring (Per1,2-/-) and littermate wildtype (Wt) mice. The techniques used include locomotor activity recording by passive infrared (PIR) sen-sors, EEG/EMG surgery, recording, and analysis, and cerebral cortex extraction and quantification of mRNA levels by qPCR. Under standard LD12:12 conditions, we found that wakefulness onset, as well as the time courses of clock gene expression in the brain and corticosterone plasma levels were ad-vanced by about 2h in Per2-/- mice compared to Wt mice. When released under constant dark condi-tions almost all Per2-/- mice (97%) became arrhythmic immediately. From these observations, we conclude that while Per2-/- mice seem to be able to anticipate dark onset, this does not result from a self-sustained circadian clock. Our results suggest instead that the earlier onset of activity results from a labile, not-self sustained 22h rhythm linked to light onset suggesting the existence of a light-driven rhythm. Analyses of sleep under LD12:12 conditions revealed that in both Per2-/- and Per1,2-/- mice the same sleep phenotypes are observed compared to Wt mice: increased NREM sleep frag-mentation and inability to adequately compensate the loss of NREM sleep. That suggests a possible role of PER2 in sleep consolidation and recovery.
Resumo:
We present a method for using long-term organotypic slice co-cultures of the entorhino-hippocampal formation to analyze the axon-regenerative properties of a determined compound. The culture method is based on the membrane interphase method, which is easy to perform and is generally reproducible. The degree of axonal regeneration after treatment in lesioned cultures can be seen directly using green fluorescent protein (GFP) transgenic mice or by axon tracing and histological methods. Possible changes in cell morphology after pharmacological treatment can be determined easily by focal in vitro electroporation. The well-preserved cytoarchitectonics in the co-culture facilitate the analysis of identified cells or regenerating axons. The protocol takes up to a month.
Resumo:
Rationale The pharmacological actions of most antidepressants are ascribed to the modulation of serotonergic and/or noradrenergic transmission in the brain. During therapeutic treatment for major depression, fluoxetine, one of the most commonly prescribed selective serotonin reuptake inhibitor (SSRI) antidepressants, accumulates in the brain, suggesting that fluoxetine may interact with additional targets. In this context, there is increasing evidence that astrocytes are involved in the pathophysiology of major depression.Objectives The aim of this study was to examine the effects of fluoxetine on the expression of neurotrophic/growth factors that have antidepressant properties and on glucose metabolism in cultured cortical astrocytes.Results Treatment of astrocytes with fluoxetine and paroxetine, another SSRI antidepressant, upregulated brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and VGF mRNA expression. In contrast, the tricyclic antidepressants desipramine and imipramine did not affect the expression of these neurotrophic/growth factors. Analysis of the effects of fluoxetine on glucose metabolism revealed that fluoxetine reduces glycogen levels and increases glucose utilization and lactate release by astrocytes. Similar data were obtained with paroxetine, whereas imipramine and desipramine did not regulate glucose metabolism in this glial cell population. Our results also indicate that the effects of fluoxetine and paroxetine on glucose utilization, lactate release, and expression of BDNF, VEGF, and VGF are not mediated by serotonin-dependent mechanisms.Conclusions These data suggest that, by increasing the expression of specific astrocyte-derived neurotrophic factors and lactate release from astrocytes, fluoxetine may contribute to normalize the trophic and metabolic support to neurons in major depression.
Resumo:
Interactions between Notch1 receptors on lymphoid progenitors and Delta-like 4 (DL4) ligands on cortical thymic epithelial cells (cTEC) are essential for T cell lineage commitment, expansion, and maturation in the thymus. Using a novel mAb against DL4, we show that DL4 levels on cTEC are very high in the fetal and neonatal thymus when thymocyte expansion is maximal but decrease dramatically in the adult when steady-state homeostasis is attained. Analysis of mutant mouse strains where thymocyte development is blocked at different stages indicates that lymphostromal interactions ("thymus crosstalk") are required for DL4 down-regulation on cTEC. Reconstitution of thymocyte development in these mutant mice further suggests that maturation of thymocytes to the CD4(+)CD8(+) stage and concomitant expansion are needed to promote DL4 down-regulation on cTEC. Collectively, our data support a model where thymic crosstalk quantitatively regulates the rate of Notch1-dependent thymopoiesis by controlling DL4 expression levels on cTEC.
Resumo:
Developing a novel technique for the efficient, noninvasive clinical evaluation of bone microarchitecture remains both crucial and challenging. The trabecular bone score (TBS) is a new gray-level texture measurement that is applicable to dual-energy X-ray absorptiometry (DXA) images. Significant correlations between TBS and standard 3-dimensional (3D) parameters of bone microarchitecture have been obtained using a numerical simulation approach. The main objective of this study was to empirically evaluate such correlations in anteroposterior spine DXA images. Thirty dried human cadaver vertebrae were evaluated. Micro-computed tomography acquisitions of the bone pieces were obtained at an isotropic resolution of 93μm. Standard parameters of bone microarchitecture were evaluated in a defined region within the vertebral body, excluding cortical bone. The bone pieces were measured on a Prodigy DXA system (GE Medical-Lunar, Madison, WI), using a custom-made positioning device and experimental setup. Significant correlations were detected between TBS and 3D parameters of bone microarchitecture, mostly independent of any correlation between TBS and bone mineral density (BMD). The greatest correlation was between TBS and connectivity density, with TBS explaining roughly 67.2% of the variance. Based on multivariate linear regression modeling, we have established a model to allow for the interpretation of the relationship between TBS and 3D bone microarchitecture parameters. This model indicates that TBS adds greater value and power of differentiation between samples with similar BMDs but different bone microarchitectures. It has been shown that it is possible to estimate bone microarchitecture status derived from DXA imaging using TBS.
Resumo:
Cell motility is an essential process that depends on a coherent, cross-linked actin cytoskeleton that physically coordinates the actions of numerous structural and signaling molecules. The actin cross-linking protein, filamin (Fln), has been implicated in the support of three-dimensional cortical actin networks capable of both maintaining cellular integrity and withstanding large forces. Although numerous studies have examined cells lacking one of the multiple Fln isoforms, compensatory mechanisms can mask novel phenotypes only observable by further Fln depletion. Indeed, shRNA-mediated knockdown of FlnA in FlnB¿/¿ mouse embryonic fibroblasts (MEFs) causes a novel endoplasmic spreading deficiency as detected by endoplasmic reticulum markers. Microtubule (MT) extension rates are also decreased but not by peripheral actin flow, because this is also decreased in the Fln-depleted system. Additionally, Fln-depleted MEFs exhibit decreased adhesion stability that appears in increased ruffling of the cell edge, reduced adhesion size, transient traction forces, and decreased stress fibers. FlnA¿/¿ MEFs, but not FlnB¿/¿ MEFs, also show a moderate defect in endoplasm spreading, characterized by initial extension followed by abrupt retractions and stress fiber fracture. FlnA localizes to actin linkages surrounding the endoplasm, adhesions, and stress fibers. Thus we suggest that Flns have a major role in the maintenance of actin-based mechanical linkages that enable endoplasmic spreading and MT extension as well as sustained traction forces and mature focal adhesions.
Resumo:
ABSTRACT. A dual-wavelength digital holographic microscope to measure absolute volume of living cells is proposed. The optical setup allows us to reconstruct two quantitative phase contrast images at two different wavelengths from a single hologram acquisition. When adding the absorbing dye fast green FCF as a dispersive agent to the extracellular medium, cellular thickness can be univocally determined in the full field of view. In addition to the absolute cell volume, the method can be applied to derive important biophysical parameters of living cells including osmotic membrane water permeability coefficient and the integral intracellular refractive index (RI). Further, the RI of transmembrane flux can be determined giving an indication about the nature of transported solutes. The proposed method is applied to cultured human embryonic kidney cells, Chinese hamster ovary cells, human red blood cells, mouse cortical astrocytes, and neurons.
Resumo:
RESUME L'hyperammonémie est particulièrement toxique pour le cerveau des jeunes patients et entraîne une atrophie corticale, un élargissement des ventricules et des défauts de myélinisation, responsables de retards mentaux et développementaux. Les traitements actuels se limitent à diminuer le plus rapidement possible le taux d'ammoniaque dans l'organisme. L'utilisation de traitements neuroprotecteurs pendant les crises d'hyperammonémie permettrait de contrecarrer les effets neurologiques de l'ammoniaque et de prévenir l'apparition des troubles neurologiques. Au cours de cette thèse, nous avons testé trois stratégies de neuroprotection sur des cultures de cellules en agrégats issues du cortex d'embryons de rats et traitées à l'ammoniaque. - Nous avons tout d'abord testé si l'inhibition de protéines intracellulaires impliquées dans le déclenchement de la mort cellulaire pouvait protéger les cellules de la toxicité de l'ammoniaque. Nous avons montré que L'exposition à l'ammoniaque altérait la viabilité des neurones et des oligodendrocytes, et activait les caspases, la calpaïne et la kinase-5 dépendante des cyclines (cdk5) associée à son activateur p25. Alors que l'inhibition pharmacologique des caspases et de la calpaïne n'a pas permis de protéger les cellules cérébrales, un inhibiteur de la cdk5, appelé roscovitine, a réduit significativement la mort neuronale. L'inhibition de la cdk5 semble donc être une stratégie thérapeutique prometteuse pour prévenir 1es effets toxiques de 1'ammoniaque sur les neurones. - Nous avons ensuite étudié les mécanismes neuroprotecteurs déclenchés par le cerveau en réponse à la toxicité de l'ammoniaque. Nous avons montré que l'ammoniaque induisait la synthèse du facteur neurotrophique ciliaire (CNTF) par les astrocytes, via l'activation de la protéine kinase (MIAPK) p38. D'autre part, l'ajout de CNTF a permis de protéger les oligodendrocytes mais pas les neurones des cultures exposées à l'ammoniaque, via les voies de signalisations JAK/STAT, SAPK/JNK et c-jun. - Dans une dernière partie, nous avons voulu contrecarrer, par l'ajout de créatine, le déficit énergétique cérébral induit par l'ammoniaque. La créatine a permis de protéger des cellules de type astrocytaire mais pas les cellules cérébrales en agrégats. Cette thèse amis en évidence que les stratégies de neuroprotection chez les patients hyperammonémiques nécessiteront de cibler plusieurs voies de signalisation afin de protéger tous les types cellulaires du cerveau. Summary : In pediatric patients, hyperammonemia is mainly caused by urea cycle disorders or other inborn errors of metabolism, and leads to neurological injury with cortical atrophy, ventricular enlargement and demyelination. Children rescued from neonatal hyperammonemia show significant risk of mental retardation and developmental disabilities. The mainstay of therapy is limited to ammonia lowering through dietary restriction and alternative pathway treatments. However, the possibility of using treatments in a neuroprotective goal may be useful to improve the neurological outcome of patients. Thus, the main objective of this work was to investigate intracellular and extracellular signaling pathways altered by ammonia tonicity, so as to identify new potential therapeutic targets. Experiments were conducted in reaggregated developing brain cell cultures exposed to ammonia, as a model for the developing CNS of hyperammonemic young patients. Theses strategies of neuroprotection were tested: - The first strategy consisted in inhibiting intracellular proteins triggering cell death. Our data indicated that ammonia exposure altered the viability of neurons and oligodendrocytes. Apoptosis and proteins involved in the trigger of apoptosis, such as caspases, calpain and cyclin-dependent kinase-5 (cdk5) with its activator p25, were activated by ammonia exposure. While caspases and calpain inhibitors exhibited no protective effects, roscovitine, a cdk5 inhibitor, reduced ammonia-induced neuronal death. This work revealed that inhibition of cdk5 seems a promising strategy to prevent the toxic effects of ammonia on neurons. - The second strategy consisted in mimicking, the endogenous protective mechanisms triggered by ammonia in the brain. Ammonia exposure caused an increase of the ciliary neurotrophic factor (CNTF) expression, through the activation of the p38 mitogen-activated protein kinase (MAPK) in astrocytes. Treatment of cultures exposed to ammonia with exogenous CNTF demonstrated strong protective effects on oligodendrocytes but not on neurons. These protective effects seemed to involve JAK/STAT, SAPK/JNK and c-jun proteins. - The third strategy consisted in preventing the ammonia-induced cerebral energy deficit with creatine. Creatine treatment protected the survival of astrocyte-like cells through MAPKs pathways. In contrast, it had no protective effects in reaggregated developing brain cell cultures exposed to ammonia. The present study suggests that neuroprotective strategies should optimally be directed at multiple targets to prevent ammonia-induced alterations of the different brain cell types.
Resumo:
To explore possible morphological abnormalities in the dorsal and subgenual parts of anterior cingulate cortex in mood disorders and schizophrenia, we performed a quantitative postmortem study of 44 schizophrenic patients, 21 patients with sporadic bipolar disorder, 20 patients with sporadic major depression, and 55 age- and sex-matched control cases. All individuals were drug naïve or had received psychotropic medication for less than 6 months, and had no history of substance abuse. Neuron densities and size were estimated on cresyl violet-stained sections using a stereological counting approach. The distribution and density of microtubule-associated (MAP2, MAP1b) and tau proteins were assessed by immunocytochemistry and quantitative immunodot assay. Mean total and laminar cortical thicknesses as well as mean pyramidal neuron size were significantly decreased in the dorsal and subgenual parts of areas 24 (24sg) in schizophrenic cases. Patients with bipolar disorder showed a substantial decrease in laminar thickness and neuron densities in layers III, V, and VI of the subgenual part of area 24, whereas patients with major depression were comparable to controls. Immunodot assay showed a significant decrease of both MAP2 and MAP1b proteins in bipolar patients but not in patients with schizophrenia and major depression. The neuroanatomical and functional significance of these findings are discussed in the light of current hypotheses regarding the role of areas 24 and 24sg in schizophrenia and bipolar disorder.
Resumo:
AIMS: Previous neuroimaging reports described morphological and functional abnormalities in anterior cingulate cortex (ACC) in schizophrenia and mood disorders. In earlier neuropathological studies, microvascular changes that could affect brain perfusion in these disorders have rarely been studied. Here, we analysed morphological parameters of capillaries in this area in elderly cases affected by these psychiatric disorders. METHODS: We analysed microvessel diameters in the dorsal and subgenual parts of the ACC in eight patients with schizophrenia, 10 patients with sporadic bipolar disorder, eight patients with sporadic major depression, and seven age- and gender-matched control cases on sections stained with modified Gallyas silver impregnation using a stereological counting approach. All individuals were drug-naïve or had received psychotropic medication for less than 6 months, and had no history of substance abuse. Statistical analysis included Kruskal-Wallis group comparisons with Bonferroni correction as well as multivariate regression models. RESULTS: Mean capillary diameter was significantly decreased in the dorsal and subgenual parts of areas 24 in bipolar and unipolar depression cases, both in layers III and V, whereas schizophrenia patients were comparable with controls. These differences persisted when controlling for age, local neuronal densities, and cortical thickness. In addition, cortical thickness was significantly smaller in both layers in schizophrenia patients. CONCLUSIONS: Our findings indicate that capillary diameters in bipolar and unipolar depression but not in schizophrenia are reduced in ACC. The significance of these findings is discussed in the light of the cytoarchitecture, brain metabolism and perfusion changes observed in ACC in mood disorders.