941 resultados para Corrupt organization
Resumo:
VIDA is a new virus database that organizes open reading frames (ORFs) from partial and complete genomic sequences from animal viruses. Currently VIDA includes all sequences from GenBank for Herpesviridae, Coronaviridae and Arteriviridae. The ORFs are organized into homologous protein families, which are identified on the basis of sequence similarity relationships. Conserved sequence regions of potential functional importance are identified and can be retrieved as sequence alignments. We use a controlled taxonomical and functional classification for all the proteins and protein families in the database. When available, protein structures that are related to the families have also been included. The database is available for online search and sequence information retrieval at http://www.biochem.ucl.ac.uk/bsm/virus_database/VIDA.html.
Resumo:
Paxillin acts as an adaptor protein in integrin signaling. We have shown that paxillin exists in a relatively large cytoplasmic pool, including perinuclear areas, in addition to focal complexes formed at the cell periphery and focal adhesions formed underneath the cell. Several ADP-ribosylation factor (ARF) GTPase-activating proteins (GAPs; ARFGAPs) have been shown to associate with paxillin. We report here that Git2-short/KIAA0148 exhibits properties of a paxillin-associated ARFGAP and appears to be colocalized with paxillin, primarily at perinuclear areas. A fraction of Git2-short was also localized to actin-rich structures at the cell periphery. Unlike paxillin, however, Git2-short did not accumulate at focal adhesions underneath the cell. Git2-short is a short isoform of Git2, which is highly homologous to p95PKL, another paxillin-binding protein, and showed a weaker binding affinity toward paxillin than that of Git2. The ARFGAP activities of Git2 and Git2-short have been previously demonstrated in vitro, and we provided evidence that at least one ARF isoform, ARF1, is an intracellular substrate for the GAP activity of Git2-short. We also showed that Git2-short could antagonize several known ARF1-mediated phenotypes: overexpression of Git2-short, but not its GAP-inactive mutant, caused the redistribution of Golgi protein β-COP and reduced the amounts of paxillin-containing focal adhesions and actin stress fibers. Perinuclear localization of paxillin, which was sensitive to ARF inactivation, was also affected by Git2-short overexpression. On the other hand, paxillin localization to focal complexes at the cell periphery was unaffected or even augmented by Git2-short overexpression. Therefore, an ARFGAP protein weakly interacting with paxillin, Git2-short, exhibits pleiotropic functions involving the regulation of Golgi organization, actin cytoskeletal organization, and subcellular localization of paxillin, all of which need to be coordinately regulated during integrin-mediated cell adhesion and intracellular signaling.
Resumo:
Retrovirus infection is initiated by receptor-dependent fusion of the envelope to the cell membrane. The modular organization of the envelope protein of C type retroviruses has been exploited to investigate how binding of the surface subunit (SU) to receptor triggers fusion mediated by the transmembrane (TM) subunit. We show that deletion of the receptor-binding domain (RBD) from SU of Friend murine leukemia virus (Fr-MLV) abolishes infection that is restored by supplying RBD as a soluble protein. Infection by this mechanism remains dependent on receptor expression. When membrane attachment of the virus lacking RBD is reestablished by inserting the hormone erythropoietin, infection remains dependent on the RBD/receptor complex. However, infection increases 50-fold to 5 × 105 units/ml on cells that also express the erythropoietin receptor. Soluble RBD from Fr-MLV also restores infection by amphotropic and xenotropic MLVs in which RBD is deleted. These experiments demonstrate that RBD has two functions: mediating virus attachment and activating the fusion mechanism. In addition, they indicate that receptor engagement triggers fusion by promoting a subgroup-independent functional interaction between RBD and the remainder of SU and/or TM.
Resumo:
The organization of the endoplasmic reticulum (ER) in the cortex of Xenopus oocytes was investigated during maturation and activation using a green fluorescent protein chimera, immunofluorescence, and electron microscopy. Dense clusters of ER developed on the vegetal side (the side opposite the meiotic spindle) during maturation. Small clusters appeared transiently at the time of nuclear envelope breakdown, disappeared at the time of first polar body formation, and then reappeared as larger clusters in mature eggs. The appearance of the large ER clusters was correlated with an increase in releaseability of Ca2+ by IP3. The clusters dispersed during the Ca2+ wave at activation. Possible relationships of ER structure and Ca2+ regulation are discussed.
Resumo:
The Escherichia coli biotin repressor binds to the biotin operator to repress transcription of the biotin biosynthetic operon. In this work, a structure determined by x-ray crystallography of a complex of the repressor bound to biotin, which also functions as an activator of DNA binding by the biotin repressor (BirA), is described. In contrast to the monomeric aporepressor, the complex is dimeric with an interface composed in part of an extended β-sheet. Model building, coupled with biochemical data, suggests that this is the dimeric form of BirA that binds DNA. Segments of three surface loops that are disordered in the aporepressor structure are located in the interface region of the dimer and exhibit greater order than was observed in the aporepressor structure. The results suggest that the corepressor of BirA causes a disorder-to-order transition that is a prerequisite to repressor dimerization and DNA binding.
Resumo:
In humans declarative or explicit memory is supported by the hippocampus and related structures of the medial temporal lobe working in concert with the cerebral cortex. This paper reviews our progress in developing an animal model for studies of cortical–hippocampal interactions in memory processing. Our findings support the view that the cortex maintains various forms of memory representation and that hippocampal structures extend the persistence and mediate the organization of these codings. Specifically, the parahippocampal region, through direct and reciprocal interconnections with the cortex, is sufficient to support the convergence and extended persistence of cortical codings. The hippocampus itself is critical to the organization cortical representations in terms of relationships among items in memory and in the flexible memory expression that is the hallmark of declarative memory.
Resumo:
Although much of the brain’s functional organization is genetically predetermined, it appears that some noninnate functions can come to depend on dedicated and segregated neural tissue. In this paper, we describe a series of experiments that have investigated the neural development and organization of one such noninnate function: letter recognition. Functional neuroimaging demonstrates that letter and digit recognition depend on different neural substrates in some literate adults. How could the processing of two stimulus categories that are distinguished solely by cultural conventions become segregated in the brain? One possibility is that correlation-based learning in the brain leads to a spatial organization in cortex that reflects the temporal and spatial clustering of letters with letters in the environment. Simulations confirm that environmental co-occurrence does indeed lead to spatial localization in a neural network that uses correlation-based learning. Furthermore, behavioral studies confirm one critical prediction of this co-occurrence hypothesis, namely, that subjects exposed to a visual environment in which letters and digits occur together rather than separately (postal workers who process letters and digits together in Canadian postal codes) do indeed show less behavioral evidence for segregated letter and digit processing.
Resumo:
Cerebral organization during sentence processing in English and in American Sign Language (ASL) was characterized by employing functional magnetic resonance imaging (fMRI) at 4 T. Effects of deafness, age of language acquisition, and bilingualism were assessed by comparing results from (i) normally hearing, monolingual, native speakers of English, (ii) congenitally, genetically deaf, native signers of ASL who learned English late and through the visual modality, and (iii) normally hearing bilinguals who were native signers of ASL and speakers of English. All groups, hearing and deaf, processing their native language, English or ASL, displayed strong and repeated activation within classical language areas of the left hemisphere. Deaf subjects reading English did not display activation in these regions. These results suggest that the early acquisition of a natural language is important in the expression of the strong bias for these areas to mediate language, independently of the form of the language. In addition, native signers, hearing and deaf, displayed extensive activation of homologous areas within the right hemisphere, indicating that the specific processing requirements of the language also in part determine the organization of the language systems of the brain.
Resumo:
Relying on a quantitative analysis of the patenting and assignment behavior of inventors, we highlight the evolution of institutions that encouraged trade in technology and a growing division of labor between those who invented new technologies and those who exploited them commercially over the nineteenth and early-twentieth centuries. At the heart of this change in the organization of inventive activity was a set of familiar developments which had significant consequences for the supply and demand of inventions. On the supply side, the growing complexity and capital intensity of technology raised the amount of human and physical capital required for effective invention, making it increasingly desirable for individuals involved in this activity to specialize. On the demand side, the growing competitiveness of product markets induced firms to purchase or otherwise obtain the rights to technologies developed by others. These increasing incentives to differentiate the task of invention from that of commercializing new technologies depended for their realization upon the development of markets and other types of organizational supports for trade in technology. The evidence suggests that the necessary institutions evolved first in those regions of the country where early patenting activity had already been concentrated. A self-reinforcing process whereby high rates of inventive activity encouraged the evolution of a market for technology, which in turn encouraged greater specialization and productivity at invention as individuals found it increasingly feasible to sell and license their discoveries, appears to have been operating. This market trade in technological information was an important contributor to the achievement of a high level of specialization at invention well before the rise of large-scale research laboratories in the twentieth century.
Resumo:
A whole genome cattle-hamster radiation hybrid cell panel was used to construct a map of 54 markers located on bovine chromosome 5 (BTA5). Of the 54 markers, 34 are microsatellites selected from the cattle linkage map and 20 are genes. Among the 20 mapped genes, 10 are new assignments that were made by using the comparative mapping by annotation and sequence similarity strategy. A LOD-3 radiation hybrid framework map consisting of 21 markers was constructed. The relatively low retention frequency of markers on this chromosome (19%) prevented unambiguous ordering of the other 33 markers. The length of the map is 398.7 cR, corresponding to a ratio of ≈2.8 cR5,000/cM. Type I genes were binned for comparison of gene order among cattle, humans, and mice. Multiple internal rearrangements within conserved syntenic groups were apparent upon comparison of gene order on BTA5 and HSA12 and HSA22. A similarly high number of rearrangements were observed between BTA5 and MMU6, MMU10, and MMU15. The detailed comparative map of BTA5 should facilitate identification of genes affecting economically important traits that have been mapped to this chromosome and should contribute to our understanding of mammalian chromosome evolution.
Resumo:
A specific set of molecules including glutamate receptors is targeted to the postsynaptic specialization of excitatory synapses in the brain, gathering in a structure known as the postsynaptic density (PSD). Synaptic targeting of glutamate receptors depends on interactions between the C-terminal tails of receptor subunits and specific PDZ domain-containing scaffold proteins in the PSD. These scaffold proteins assemble a specialized protein complex around each class of glutamate receptor that functions in signal transduction, cytoskeletal anchoring, and trafficking of the receptors. Among the glutamate receptor subtypes, the N-methyl-d-aspartate receptor is relatively stably integrated in the PSD, whereas the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor moves in and out of the postsynaptic membrane in highly dynamic fashion. The distinctive cell biological behaviors of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors can be explained by their differential interactions with cytoplasmic proteins.
Resumo:
The ability of the cornea to transmit light while being mechanically resilient is directly attributable to the formation of an extracellular matrix containing orthogonal sheets of collagen fibrils. The detailed structure of the fibrils and how this structure underpins the mechanical properties and organization of the cornea is understood poorly. In this study, we used automated electron tomography to study the three-dimensional organization of molecules in corneal collagen fibrils. The reconstructions show that the collagen molecules in the 36-nm diameter collagen fibrils are organized into microfibrils (≈4-nm diameter) that are tilted by ≈15° to the fibril long axis in a right-handed helix. An unexpected finding was that the microfibrils exhibit a constant-tilt angle independent of radial position within the fibril. This feature suggests that microfibrils in concentric layers are not always parallel to each other and cannot retain the same neighbors between layers. Analysis of the lateral structure shows that the microfibrils exhibit regions of order and disorder within the 67-nm axial repeat of collagen fibrils. Furthermore, the microfibrils are ordered at three specific regions of the axial repeat of collagen fibrils that correspond to the N- and C-telopeptides and the d-band of the gap zone. The reconstructions also show macromolecules binding to the fibril surface at sites that correspond precisely to where the microfibrils are most orderly.