817 resultados para Copper ferrite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alteration in a submarine remnant volcanic arc should leave an important record of (1) the mineralogy of sea water-volcanic arc rock interaction; (2) the chemistry of solid reaction products; (3) the isotopic characteristics of such reactions (Muehlenbachs and Clayton, 1972; Spooner, Beckinsale, et al , 1977; Spooner, Chapman, et al., 1977); (4) the metallogenesis within such a sequence (Mitchell and Bell, 1973); and (5) the geothermal gradient during the alteration. The volcaniclastic breccias, tuffs, and igneous units of Sites 448 (993 m) and 451 (930.5 m) on the Palau-Kyushu and West Mariana ridges, respectively, are particularly suited for such studies because the thick sequences have remained submarine throughout their history, seemingly unaffected by magmatic or hydrothermal events after cessation of volcanic activity. Also, shipboard observations indicated a change in alteration products with depth. At both sites the igneous units and volcaniclastic rocks were altered to brownish clays and zeolites near the top of the volcanic sequence; to bright blue green clays and zeolites at moderate depths; and to very dark, nearly opaque, forest green clays and zeolites at still greater depths. Native copper occurs both as disseminated pockets in the volcaniclastic breccias and vesicular basalts and as veins in the breccias; native copper is restricted to stratigraphic levels characterized by the absence of sulfides or oxides of copper and iron. Although some native copper is found in vesicles of basalts and may be orthomagmatic, most of it is clearly secondary. Near dikes and sills, higher sulfur fugacity conditions caused the precipitation of iron and copper sulfides with an absence of native copper (Garrels and Christ, 1965). The occurrence of native copper may be an initial stage of Cu metallogenesis that forms porphyry coppers in island arcs (Mitchell and Bell, 1973). This study will address primarily the possibility that hydrothermal sea water interaction with volcanic arc rocks has created the mineralogical and isotopic zonation in Leg 59 cores. Hydrothermal activity can be expected in a rapidly growing island arc and is probably the result of a high geothermal gradient prevalent during arc magmatic activity. The chemical character of the alteration is further discussed by Hajash (1981).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper porphyrins have been recognized as natural constituents of marine sediments only within the past 5 years (Palmer and Baker, 1978, Science201, 49-51). In that report it was suggested that these pigments may derive from and be markers for oxidized terrestrial organic matter redeposited in the marine environment. In the present study we describe the distribution of copper porphyrins in sediments from several north Pacific and Gulf of California DSDP/IPQD sites (Legs 56,63,64). These allochthonous pigments have now been found to be accompanied by identical arrays of highly dealkylated nickel etioporphyrins. Evaluation of data from this and past studies clearly reveals that there is a strong carbon-number distribution similarity betweeen coincident Cu and Ni etioporphyrins. This homology match is taken as reflecting a common source for the tetrapyrrole ligands of this population of Cu and Ni chelates. Predepositional generation of these highly dealkylated etioporphyrins is concluded from the occurrence of these pigments in sediments continuing essentially all stages of in situ chlorophyll diagenesis (cf. Baker and Louda, 1983). That is, their presence is not regulated by the in situ diagenetic continuum. Thus, the highly dealkylated Cu and Ni etioporphyrins represent an 'allochthonous' background over which 'autochthonous' (viz. marine produced) chlorophyll derivatives are deposited and are undergoing in situ diagenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Duolong porphyry Cu-Au deposit (5.4 Mt at 0.72% Cu, 41 t at 0.23 g/t Au), which is related to the granodiorite porphyry and the quartz-diorite porphyry from the Bangongco copper belt in central Tibet, formed in a continental arc setting. Here, we present the zircon U-Pb ages, geochemical whole-rock, Sr-Nd whole-rock and zircon in-situ Hf-O isotopic data for the Duolong porphyries. Secondary ion mass spectrometry (SIMS) zircon U-Pb analyses for six samples yielded consistent ages of ~118 Ma, indicating a Cretaceous formation age. The Duolong porphyries (SiO2 of 58.81-68.81 wt.%, K2O of 2.90-5.17 wt.%) belong to the high-K calc-alkaline series. They show light rare earth element (LREE)-enriched distribution patterns with (La/Yb)N = 6.1-11.7, enrichment in large ion lithophile elements (e.g., Cs, Rb, and Ba) and depletion of high field strength elements (e.g., Nb), with negative Ti anomalies. All zircons from the Duolong porphyries share relatively similar Hf-O isotopic compositions (d18O=5.88-7.27 per mil; eHf(t)=3.6-7.3), indicating that they crystallized from a series of cogenetic melts with various degrees of fractional crystallization. This, along with the general absence of older inherited zircons, rules out significant crustal contamination during zircon growth. The zircons are mostly enriched in d18O relative to mantle values, indicating the involvement of an 18O-enriched crustal source in the generation of the Duolong porphyries. Together with the presence of syn-mineralization basaltic andesite, the mixing between silicic melts derived from the lower crust and evolved H2O-rich mafic melts derived from the metsomatizied mantle wedge, followed by subsequent fractional crystallization (FC) and minor crustal contamination in the shallow crust, could well explain the petrogenesis of the Duolong porphyries. Significantly, the hybrid melts possibly inherited the arc magma characteristics of abundant F, Cl, Cu, and Au elements and high oxidation state, which contributed to the formation of the Duolong porphyry Cu-Au deposit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Yangla copper deposit, situated in the middle section of Jinshajiang tectonic belt between Zhongza-Zhongdian block and Changdu-Simao block, is a representative and giant copper deposit that has been discovered in Jinshajiang-Lancangjiang-Nujiang region in recent years. There are coupled relationship between Yangla granodiorite and copper mineralization in the Yangla copper deposit. Five molybdenite samples yielded a well-constrained 187Re-187Os isochron age of 233.3±3 Ma, the metallogenesis is therefore slightly younger than the crystallization age of the granodiorite. S, Pb isotopic compositions of the Yangla copper deposit indicate that the ore-forming materials were derived from the mixture of upper crust and mantle, also with the magmatic contributions. In the late Early Permian, the Jinshajiang Oceanic plate was subducted to the west, resulting in the formation of a series of gently dipping thrust faults in the Jinshajiang tectonic belt, meanwhile, accompanied magmatic activities. In the early Late Triassic, which was a time of transition from collision-related compression to extension in the Jinshajiang tectonic belt, the thrust faults were tensional; it would have been a favorable environment for forming ore fluids. The ascending magma provided a channel for the ore-forming fluid from the mantle wedge. After the magma arrived at the base of the early-stage Yangla granodiorite, the platy granodiorite at the base of the body would have shielded the late-stage magma from the fluid. The magma would have cooled slowly, and some of the ore-forming fluid in the magma would have entered the gently dipping thrust faults near the Yangla granodiorite, resulting in mineralization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A particle accelerator is any device that, using electromagnetic fields, is able to communicate energy to charged particles (typically electrons or ionized atoms), accelerating and/or energizing them up to the required level for its purpose. The applications of particle accelerators are countless, beginning in a common TV CRT, passing through medical X-ray devices, and ending in large ion colliders utilized to find the smallest details of the matter. Among the other engineering applications, the ion implantation devices to obtain better semiconductors and materials of amazing properties are included. Materials supporting irradiation for future nuclear fusion plants are also benefited from particle accelerators. There are many devices in a particle accelerator required for its correct operation. The most important are the particle sources, the guiding, focalizing and correcting magnets, the radiofrequency accelerating cavities, the fast deflection devices, the beam diagnostic mechanisms and the particle detectors. Most of the fast particle deflection devices have been built historically by using copper coils and ferrite cores which could effectuate a relatively fast magnetic deflection, but needed large voltages and currents to counteract the high coil inductance in a response in the microseconds range. Various beam stability considerations and the new range of energies and sizes of present time accelerators and their rings require new devices featuring an improved wakefield behaviour and faster response (in the nanoseconds range). This can only be achieved by an electromagnetic deflection device based on a transmission line. The electromagnetic deflection device (strip-line kicker) produces a transverse displacement on the particle beam travelling close to the speed of light, in order to extract the particles to another experiment or to inject them into a different accelerator. The deflection is carried out by the means of two short, opposite phase pulses. The diversion of the particles is exerted by the integrated Lorentz force of the electromagnetic field travelling along the kicker. This Thesis deals with a detailed calculation, manufacturing and test methodology for strip-line kicker devices. The methodology is then applied to two real cases which are fully designed, built, tested and finally installed in the CTF3 accelerator facility at CERN (Geneva). Analytical and numerical calculations, both in 2D and 3D, are detailed starting from the basic specifications in order to obtain a conceptual design. Time domain and frequency domain calculations are developed in the process using different FDM and FEM codes. The following concepts among others are analyzed: scattering parameters, resonating high order modes, the wakefields, etc. Several contributions are presented in the calculation process dealing specifically with strip-line kicker devices fed by electromagnetic pulses. Materials and components typically used for the fabrication of these devices are analyzed in the manufacturing section. Mechanical supports and connexions of electrodes are also detailed, presenting some interesting contributions on these concepts. The electromagnetic and vacuum tests are then analyzed. These tests are required to ensure that the manufactured devices fulfil the specifications. Finally, and only from the analytical point of view, the strip-line kickers are studied together with a pulsed power supply based on solid state power switches (MOSFETs). The solid state technology applied to pulsed power supplies is introduced and several circuit topologies are modelled and simulated to obtain fast and good flat-top pulses.