911 resultados para Cooking (Vegetables)--Recipes
Resumo:
Food neophobia is a highly heritable trait characterized by the rejection of foods that are novel or unknown and potentially limits dietary variety, with lower intake and preference particularly for fruits and vegetables. Understanding non-genetic (environmental) factors that may influence the expression of food neophobia is essential to improving children’s consumption of fruits and vegetables and encouraging the adoption of healthier diets. The aim of this study was to examine whether maternal infant feeding beliefs (at four months) were associated with the expression of food neophobia in toddlers and whether controlling feeding practices mediated this relationship. Participants were 244 first-time mothers (M = 30.4, SD = 5.1 years) allocated to the control group of the NOURISH randomized controlled trial. The relationships between infant feeding beliefs (Infant Feeding Questionnaire) at four months and controlling child feeding practices (Child Feeding Questionnaire) and food neophobia (Child Food Neophobia Scale) at 24 months were tested using correlational and multiple linear regression models (adjusted for significant covariates). Higher maternal Concern about infant under-eating and becoming underweight at four months was associated with higher child food neophobia at two years. Similarly, lower Awareness of infant hunger and satiety cues was associated with higher child food neophobia. Both associations were significantly mediated by mothers’ use of Pressure to eat. Intervening early to promote positive feeding practices to mothers may help reduce the use of controlling practices as children develop. Further research that can further elucidate the bi-directional nature of the mother-child feeding relationship is still required.
Resumo:
In this paper we contribute to the growing body of research into the use and design of technology in the kitchen. This research aims to identify opportunities for designing technologies that may augment existing cooking traditions and in particular familial recipe sharing practices. Using ethnographic techniques, we identify the homemade cookbook as a significant material and cultural artifact in the family kitchen. We report on findings from our study by providing descriptive accounts of various homemade cookbooks, and offer design considerations for digitally augmenting homemade cookbooks.
Resumo:
This was a comparative study of the possibility of a net zero energy house in Queensland, Australia. It examines the actual energy use and thermal comfort conditions of an occupied Brisbane home and compares performance with the 10 star scale rating scheme for Australian residential buildings. An adaptive comfort psychometric chart was developed for this analysis. The house's capacity for the use of the natural ventilation was studied by CFD modelling. This study showed that the house succeeded in achieving the definition of net zero energy on an annual and monthly basis for lighting, cooking and space heating / cooling and for 70% of days for lighting, hot water and cooking services.
Resumo:
Objective To describe the quantity and diversity of food and beverage intake in Australian children aged 12–16 months and to determine if the amount and type of milk intake is associated with dietary diversity. Methods Mothers participating in the NOURISH and South Australian Infant Dietary Intake (SAIDI) studies completed a single 24-hour recall of their child's food intake, when children (n=551) were aged 12–16 months. The relationship between dietary diversity and intake of cow's milk, formula or breastmilk was examined using one-way ANOVA. Results Dairy and cereal were the most commonly consumed food groups and the greatest contributors to daily energy intake. Most children ate fruit (87%) and vegetables (77%) on the day of the 24-hour recall while 91% ate discretionary items. Half the sample ate less than 30 g of meat/alternatives. A quarter of the children were breastfeeding while formula was consumed by 32% of the sample, providing 29% of daily energy intake. Lower dietary diversity was associated with increased formula intake. Conclusions The quality of dietary intake in this group of young children is highly variable. Most toddlers were consuming a diverse diet, though almost all ate discretionary items. The amount and type of meat/alternatives consumed was poor. Implications Health professionals should advise parents to offer iron-rich foods, while limiting discretionary choices and use of formula at an age critical in the development of long-term food preferences.
Resumo:
Enhancing quality of food products and reducing volume of waste during mechanical operations of food industry requires a comprehensive knowledge of material response under loadings. While research has focused on mechanical response of food material, the volume of waste after harvesting and during processing stages is still considerably high in both developing and developed countries. This research aims to develop and evaluate a constitutive model of mechanical response of tough skinned vegetables under postharvest and processing operations. The model focuses on both tensile and compressive properties of pumpkin flesh and peel tissues where the behaviours of these tissues vary depending on various factors such as rheological response and cellular structure. Both elastic and plastic response of tissue were considered in the modelling process and finite elasticity combined with pseudo elasticity theory was applied to generate the model. The outcomes were then validated using the published results of experimental work on pumpkin flesh and peel under uniaxial tensile and compression. The constitutive coefficients for peel under tensile test was α = 25.66 and β = −18.48 Mpa and for flesh α = −5.29 and β = 5.27 Mpa. under compression the constitutive coefficients were α = 4.74 and β = −1.71 Mpa for peel and α = 0.76 and β = −1.86 Mpa for flesh samples. Constitutive curves predicted the values of force precisely and close to the experimental values. The curves were fit for whole stress versus strain curve as well as a section of curve up to bio yield point. The modelling outputs had presented good agreement with the empirical values and the constructive curves exhibited a very similar pattern to the experimental curves. The presented constitutive model can be applied next to other agricultural materials under loading in future.
Resumo:
Modelling of food processing is complex because it involves sophisticated material and transport phenomena. Most of the agricultural products such fruits and vegetables are hygroscopic porous media containing free water, bound water, gas and solid matrix. Considering all phase in modelling is still not developed. In this article, a comprehensive porous media model for drying has been developed considering bound water, free water separately, as well as water vapour and air. Free water transport was considered as diffusion, pressure driven and evaporation. Bound water assumed to be converted to free water due to concentration difference and also can diffuse. Binary diffusion between water vapour and air was considered. Since, the model is fundamental physics based it can be applied to any drying applications and other food processing where heat and mass transfer takes place in porous media with significant evaporation and other phase change.
Resumo:
In this study, the biodiesel properties and effects of blends of oil methyl ester petroleum diesel on a CI direct injection diesel engine is investigated. Blends were obtained from the marine dinoflagellate Crypthecodinium cohnii and waste cooking oil. The experiment was conducted using a four-cylinder, turbo-charged common rail direct injection diesel engine at four loads (25%, 50%, 75% and 100%). Three blends (10%, 20% and 50%) of microalgae oil methyl ester and a 20% blend of waste cooking oil methyl ester were compared to petroleum diesel. To establish suitability of the fuels for a CI engine, the effects of the three microalgae fuel blends at different engine loads were assessed by measuring engine performance, i.e. mean effective pressure (IMEP), brake mean effective pressure (BMEP), in cylinder pressure, maximum pressure rise rate, brake-specific fuel consumption (BSFC), brake thermal efficiency (BTE), heat release rate and gaseous emissions (NO, NOx,and unburned hydrocarbons (UHC)). Results were then compared to engine performance characteristics for operation with a 20% waste cooking oil/petroleum diesel blend and petroleum diesel. In addition, physical and chemical properties of the fuels were measured. Use of microalgae methyl ester reduced the instantaneous cylinder pressure and engine output torque, when compared to that of petroleum diesel, by a maximum of 4.5% at 50% blend at full throttle. The lower calorific value of the microalgae oil methyl ester blends increased the BSFC, which ultimately reduced the BTE by up to 4% at higher loads. Minor reductions of IMEP and BMEP were recorded for both the microalgae and the waste cooking oil methyl ester blends at low loads, with a maximum of 7% reduction at 75% load compared to petroleum diesel. Furthermore, compared to petroleum diesel, gaseous emissions of NO and NOx, increased for operations with biodiesel blends. At full load, NO and NOx emissions increased by 22% when 50% microalgae blends were used. Petroleum diesel and a 20% blend of waste cooking oil methyl ester had emissions of UHC that were similar, but those of microalgae oil methyl ester/petroleum diesel blends were reduced by at least 50% for all blends and engine conditions. The tested microalgae methyl esters contain some long-chain, polyunsaturated fatty acid methyl esters (FAMEs) (C22:5 and C22:6) not commonly found in terrestrial-crop-derived biodiesels yet all fuel properties were satisfied or were very close to the ASTM 6751-12 and EN14214 standards. Therefore, Crypthecodinium cohnii- derived microalgae biodiesel/petroleum blends of up to 50% are projected to meet all fuel property standards and, engine performance and emission results from this study clearly show its suitability for regular use in diesel engines.
Resumo:
Objectives To estimate the burden of disease attributed to low fruit and vegetable intake by sex and age group in South Africa for the year 2000. Design The analysis follows the World Health Organization comparative risk assessment (CRA) methodology. Populationattributable fractions were calculated from South African prevalence data from dietary surveys and applied to the revised South African burden of disease estimates for 2000. A theoretical maximum distribution of 600 g per day for fruit and vegetable intake was chosen. Monte Carlo simulationmodelling techniques were used for uncertainty analysis. Setting South Africa. Subjects Adults ≥ 15 years. Outcome measures Mortality and disability-adjusted life years (DALYs), from ischaemic heart disease, ischaemic stroke, lung cancer, gastric cancer, colorectal cancer and oesophageal cancer. Results Low fruit and vegetable intake accounted for 3.2% of total deaths and 1.1% of the 16.2 million attributable DALYs. For both males and females the largest proportion of total years of healthy life lost attributed to low fruit and vegetable intake was for ischaemic heart disease (60.6% and 52.2%, respectively). Ischaemic stroke accounted for 17.8% of attributable DALYs for males and 32.7% for females. For the related cancers, the leading attributable DALYs for men and women were oesophageal cancer (9.8% and 7.0%, respectively) and lung cancer (7.8% and 4.7%, respectively). Conclusions A high intake of fruit and vegetables can make a significant contribution to decreasing mortality from certain diseases. The challenge lies in creating the environment that facilitates changes in dietary habits such as the increased intake of fruit and vegetables.
Resumo:
Objectives: To assess socio-economic differences in three components of nutrition knowledge, i.e. knowledge of (i) the relationship between diet and disease, (ii) the nutrient content of foods and (iii) dietary guideline recommendations; furthermore, to determine if socio-economic differences in nutrition knowledge contribute to inequalities in food purchasing choices. Design: The cross-sectional study considered household food purchasing,nutrition knowledge, socio-economic and demographic information. Household food purchasing choices were summarised by three indices, based on self-reported purchasing of sixteen groceries, nineteen fruits and twenty-one vegetables. Socio-economic position (SEP) was measured by household income and education. Associations between SEP, nutrition knowledge and food purchasing were examined using general linear models adjusted for age, gender, household type and household size. Setting: Brisbane, Australia in 2000. Subjects: Main household food shoppers (n 1003, response rate 66?4 %), located in fifty small areas (Census Collectors Districts). Results: Shoppers in households of low SEP made food purchasing choices that were less consistent with dietary guideline recommendations: they were more likely to purchase grocery foods comparatively higher in salt, sugar and fat, and lower in fibre, and they purchased a narrower range of fruits and vegetables. Those of higher SEP had greater nutrition knowledge and this factor attenuated most associations between SEP and food purchasing choices. Among nutrition knowledge factors, knowledge of the relationship between diet and disease made the greatest and most consistent contribution to explaining socio-economic differences in food purchasing. Conclusions: Addressing inequalities in nutrition knowledge is likely to reduce socio-economic differences in compliance with dietary guidelines. Improving knowledge of the relationship between diet and disease appears to be a particularly relevant focus for health promotion aimed to reduce socio-economic differences in diet and related health inequalities.
Resumo:
Background: Conventional biodiesel production relies on trans-esterification of lipids extracted from vegetable crops. However, the use of valuable vegetable food stocks as raw material for biodiesel production makes it an unfeasibly expensive process. Used cooking oil is a finite resource and requires extra downstream processing, which affects the amount of biodiesel that can be produced and the economics of the process. Lipids extracted from microalgae are considered an alternative raw material for biodiesel production. This is primarily due to the fast growth rate of these species in a simple aquaculture environment. However, the dilute nature of microalgae culture puts a huge economic burden on the dewatering process especially on an industrial scale. This current study explores the performance and economic viability of chemical flocculation and tangential flow filtration (TFF) for the dewatering of Tetraselmis suecicamicroalgae culture. Results: Results show that TFF concentrates the microalgae feedstock up to 148 times by consuming 2.06 kWh m-3 of energy while flocculation consumes 14.81 kWhm-3 to concentrate the microalgae up to 357 times. Economic evaluation demonstrates that even though TFF has higher initial capital investment than polymer flocculation, the payback period for TFF at the upper extreme ofmicroalgae revenue is ∼1.5 years while that of flocculation is ∼3 years. Conclusion: These results illustrate that improved dewatering levels can be achieved more economically by employing TFF. The performances of these two techniques are also compared with other dewatering techniques.
Resumo:
Food materials are complex in nature as it has heterogeneous, amorphous, hygroscopic and porous properties. During processing, microstructure of food materials changes which significantly affects other properties of food. An appropriate understanding of the microstructure of the raw food material and its evolution during processing is critical in order to understand and accurately describe dehydration processes and quality anticipation. This review critically assesses the factors that influence the modification of microstructure in the course of drying of fruits and vegetables. The effect of simultaneous heat and mass transfer on microstructure in various drying methods is investigated. Effects of changes in microstructure on other functional properties of dried foods are discussed. After an extensive review of the literature, it is found that development of food structure significantly depends on fresh food properties and process parameters. Also, modification of microstructure influences the other properties of final product. An enhanced understanding of the relationships between food microstructure, drying process parameters and final product quality will facilitate the energy efficient optimum design of the food processor in order to achieve high-quality food
Resumo:
Background Food neophobia, the rejection of unknown or novel foods, may result in poor dietary patterns. This study investigates the cross-sectional relationship between neophobia in children aged 24 months and variety of fruit and vegetable consumption, intake of discretionary foods and weight. Methods Secondary analysis of data from 330 parents of children enrolled in the NOURISH RCT (control group only) and SAIDI studies was performed using data collected at child age 24 months. Neophobia was measured at 24 months using the Child Food Neophobia Scale (CFNS). The cross-sectional associations between total CFNS score and fruit and vegetable variety, discretionary food intake and BMI (Body Mass Index) Z-score were examined via multiple regression models; adjusting for significant covariates. Results At 24 months, more neophobic children were found to have lower variety of fruits (β=-0.16, p=0.003) and vegetables (β=-0.29, p<0.001) but have a greater proportion of daily energy from discretionary foods (β=0.11, p=0.04). There was no significant association between BMI Z-score and CFNS score. Conclusions Neophobia is associated with poorer dietary quality. Results highlight the need for interventions to (1) begin early to expose children to a wide variety of nutritious foods before neophobia peaks and (2) enable health professionals to educate parents on strategies to overcome neophobia.
Resumo:
Children are particularly susceptible to air pollution and schools are examples of urban microenvironments that can account for a large portion of children’s exposure to airborne particles. Thus this paper aimed to determine the sources of primary airborne particles that children are exposed to at school by analyzing selected organic molecular markers at 11 urban schools in Brisbane, Australia. Positive matrix factorization analysis identified four sources at the schools: vehicle emissions, biomass burning, meat cooking and plant wax emissions accounting for 45%, 29%, 16% and 7%, of the organic carbon respectively. Biomass burning peaked in winter due to prescribed burning of bushland around Brisbane. Overall, the results indicated that both local (traffic) and regional (biomass burning) sources of primary organic aerosols influence the levels of ambient particles that children are exposed at the schools. These results have implications for potential control strategies for mitigating exposure at schools.