863 resultados para Control Design
Resumo:
The study of algorithms for active vibrations control in flexible structures became an area of enormous interest, mainly due to the countless demands of an optimal performance of mechanical systems as aircraft and aerospace structures. Smart structures, formed by a structure base, coupled with piezoelectric actuators and sensor are capable to guarantee the conditions demanded through the application of several types of controllers. This article shows some steps that should be followed in the design of a smart structure. It is discussed: the optimal placement of actuators, the model reduction and the controller design through techniques involving linear matrix inequalities (LMI). It is considered as constraints in LMI: the decay rate, voltage input limitation in the actuators and bounded output peak (output energy). Two controllers robust to parametric variation are designed: the first one considers the actuator in non-optimal location and the second one the actuator is put in an optimal placement. The performance are compared and discussed. The simulations to illustrate the methodology are made with a cantilever beam with bonded piezoelectric actuators.
Resumo:
This paper presents the analysis, design, simulation, and experimental results for a high frequency high Power-Factor (PF) AC (Alternate Current) voltage regulator, using a Sepic converter as power stage. The control technique employed to impose a sinusoidal input current waveform, with low Total Harmonic Distortion (THD), is the sinusoidal variable hysteresis control. The control technique was implemented in a FPGA (Field Programmable Gate Array) device, using a Hardware Description Language (VHDL). Through the use of the proposed control technique, the AC voltage regulator performs active power-factor correction, and low THD in the input current, for linear and non-linear loads, satisfying the requirements of the EEC61000-3-2 standards. Experimental results from an example prototype, designed for 300W of nominal output power, 50kHz (switching frequency), and 127Vrms of nominal input and output voltages, are presented in order to validate the proposed AC regulator. © 2005 IEEE.
Resumo:
A finite element modeling of an intelligent truss structure with piezoelectric stack actuators for the purpose of active damping and structural vibration attenuation is presented. This paper concerns with the following issues aspects: the design of intelligent truss structure considering electro-mechanical coupling between the host structure and piezoelectric stack actuators; the H 2 norm approach to search for optimal placement of actuators and sensors; and finally some aspects in robust control techniques. The electro-mechanical behavior of piezoelectric elements is directly related to the successful application of the actuators in truss structures. In order to achieve the desired damping in the interested bandwidth frequency it is used the H ∞ output feedback solved by convex optimization. The constraints to be reached are written by linear matrix inequalities (LMI). The paper concludes with a numerical example, using Matlab and Simulink, in a cantilevered, 2-bay space truss structure. The results demonstrated the approach applicability.
Resumo:
Purpose - The aim of this paper is to present a synthetic chart based on the non-central chi-square statistic that is operationally simpler and more effective than the joint X̄ and R chart in detecting assignable cause(s). This chart will assist in identifying which (mean or variance) changed due to the occurrence of the assignable causes. Design/methodology/approach - The approach used is based on the non-central chi-square statistic and the steady-state average run length (ARL) of the developed chart is evaluated using a Markov chain model. Findings - The proposed chart always detects process disturbances faster than the joint X̄ and R charts. The developed chart can monitor the process instead of looking at two charts separately. Originality/value - The most important advantage of using the proposed chart is that practitioners can monitor the process by looking at only one chart instead of looking at two charts separately. © Emerald Group Publishing Limted.
Resumo:
This paper presents two discrete sliding mode control (SMC) design. The first one is a discrete-time SMC design that doesn't take into account the time-delay. The second one is a discrete-time SMC design, which takes in consideration the time-delay. The proposed techniques aim at the accomplishment simplicity and robustness for an uncertainty class. Simulations results are shown and the effectiveness of the used techniques is analyzed. © 2006 IEEE.
Resumo:
The study of algorithms for active vibrations control in flexible structures became an area of enormous interest, mainly due to the countless demands of an optimal performance of mechanical systems as aircraft, aerospace and automotive structures. Smart structures, formed by a structure base, coupled with piezoelectric actuators and sensor are capable to guarantee the conditions demanded through the application of several types of controllers. The actuator/sensor materials are composed by piezoelectric ceramic (PZT - Lead Zirconate Titanate), commonly used as distributed actuators, and piezoelectric plastic films (PVDF-PolyVinyliDeno Floride), highly indicated for distributed sensors. The design process of such system encompasses three main phases: structural design; optimal placement of sensor/actuator (PVDF and PZT); and controller design. Consequently, for optimal design purposes, the structure, the sensor/actuator placement and the controller have to be considered simultaneously. This article addresses the optimal placement of actuators and sensors for design of controller for vibration attenuation in a flexible plate. Techniques involving linear matrix inequalities (LMI) to solve the Riccati's equation are used. The controller's gain is calculated using the linear quadratic regulator (LQR). The major advantage of LMI design is to enable specifications such as stability degree requirements, decay rate, input force limitation in the actuators and output peak bounder. It is also possible to assume that the model parameters involve uncertainties. LMI is a very useful tool for problems with constraints, where the parameters vary in a range of values. Once formulated in terms of LMI a problem can be solved efficiently by convex optimization algorithms.
Resumo:
This paper presents two Variable Structure Controllers (VSC) for continuous-time switched plants. It is assumed that the state vector is available for feedback. The proposed control system provides a switching rule and also the variable structure control input. The design is based on Lyapunov-Metzler (LM) inequalities and also on Strictly Positive Real (SPR) systems stability results. The definition of Lyapunov-Metzler-SPR (LMS) systems and its direct application in the design of VSC for switched systems are introduced in this paper. Two examples illustrate the design of the proposed VSC, considering a plant given by a switched system with a switched-state control law and two linear time-invariant systems, that are not controllable and also can not be stabilized with state feedback. ©2008 IEEE.
Resumo:
In the last decades there was a great development in the study of control systems to attenuate the harmful effect of natural events in great structures, as buildings and bridges. Magnetorheological fluid (MR), that is an intelligent material, has been considered in many proposals of project for these controllers. This work presents the controller design using feedback of states through LMI (Linear Matrix Inequalities) approach. The experimental test were carried out in a structure with two degrees of freedom with a connected shock absorber MR. Experimental tests were realized in order to specify the features of this semi-active controller. In this case, there exist states that are not measurable, so the feedback of the states involves the project of an estimator. The coupling of the MR damper causes a variation in dynamics properties, so an identification methods, based on experimental input/output signal was used to compare with the numerical application. The identification method of Prediction Error Methods - (PEM) was used to find the physical characteristics of the system through realization in modal space of states. This proposal allows the project of a semi-active control, where the main characteristic is the possibility of the variation of the damping coefficient.
Resumo:
The constant increase in digital systems complexity definitely demands the automation of the corresponding synthesis process. This paper presents a computational environment designed to produce both software and hardware implementations of a system. The tool for code generation has been named ACG8051. As for the hardware synthesis there has been produced a larger environment consisting of four programs, namely: PIPE2TAB, AGPS, TABELA, and TAB2VHDL. ACG8051 and PIPE2TAB use place/transition net descriptions from PIPE as inputs. ACG8051 is aimed at generating assembly code for the 8051 micro-controller. PIPE2TAB produces a tabular version of a Mealy type finite state machine of the system, its output is fed into AGPS that is used for state allocation. The resulting digital system is then input to TABELA, which minimizes control functions and outputs of the digital system. Finally, the output generated by TABELA is fed to TAB2VHDL that produces a VHDL description of the system at the register transfer level. Thus, we present here a set of tools designed to take a high-level description of a digital system, represented by a place/transition net, and produces as output both an assembly code that can be immediately run on an 8051 micro-controller, and a VHDL description that can be used to directly implement the hardware parts either on an FPGA or as an ASIC.
Resumo:
This article describes an orthodontic system used to obtain active continuous torque with movement control of both active and reactive units; the system relies on principles of the segmented technique. A cantilever system with .017 x .025-in beta-titanium alloy wire was designed to provide the desirable moment on the active unit. A transpalatal bar or a lingual arch increases the anchorage and neutralizes the side effects on the reactive unit. This technique is an efficient approach for major corrections of buccolingual inclinations of certain teeth. © 2010 American Association of Orthodontists.
Resumo:
This paper presents a control method that is effective to reduce the degenerative effects of delay time caused by a treacherous network. In present application a controlled DC motor is part of an inverted pendulum and provides the equilibrium of this system. The control of DC motor is accomplished at the distance through a treacherous network, which causes delay time in the control signal. A predictive technique is used so that it turns the system free of delay. A robust digital sliding mode controller is proposed to control the free-delay system. Due to the random conditions of the network operation, a delay time detection and accommodation strategy is also proposed. A computer simulation is shown to illustrate the design procedures and the effectiveness of the proposed method. © 2011 IEEE.
Resumo:
Study design: Association study Objective: To analyze the association between different biological/behavioral risk factors and blood pressure in a sample of type 2 diabetes mellitus patients with poor glycemic control. Methods: A sample of 121 type 2 diabetic patients was selected in the Public Healthcare System in a middle size Brazilian city. Blood pressure was measured using an aneroid device, previously calibrated. Six determinants of blood pressure were taken into count: age, hypoglycemic agents, general obesity, abdominal obesity, eating behaviors and physical activity level. Results: The type 2 diabetic patients presented mean age of 60.1±8.9 years-old and, at least, one risk factor. Eating behaviors (OR adj= 0.31 [0.12-0.75]) and sports practice (OR adj= 0.12 [0.02-0.75]) constituted protective factors associated with lower systolic blood pressure. On the other hand, age was positively associated with high systolic blood pressure (OR adj= 3.81 [1.39-10.38]). Patients with 5-6 risk factors, presented higher values of systolic and (F= 3.857; p= 0.011 [post hoc with p= 0.039]), diastolic blood pressure (F= 4.158; p= 0.008 [post hoc with p= 0.036]) and increased occurrence of hypertension (p= 0.010). Conclusion: Our findings indicate that, behavioral variables were important determinants of blood pressure in type 2 diabetic patients with poor glycemic control and clustering of behavioral and biological risk factors increase the hypertension occurrence.
Resumo:
A current trend in the agricultural area is the development of mobile robots and autonomous vehicles for precision agriculture (PA). One of the major challenges in the design of these robots is the development of the electronic architecture for the control of the devices. In a joint project among research institutions and a private company in Brazil a multifunctional robotic platform for information acquisition in PA is being designed. This platform has as main characteristics four-wheel propulsion and independent steering, adjustable width, span of 1,80m in height, diesel engine, hydraulic system, and a CAN-based networked control system (NCS). This paper presents a NCS solution for the platform guidance by the four-wheel hydraulic steering distributed control. The control strategy, centered on the robot manipulators control theory, is based on the difference between the desired and actual position and considering the angular speed of the wheels. The results demonstrate that the NCS was simple and efficient, providing suitable steering performance for the platform guidance. Even though the simplicity of the NCS solution developed, it also overcame some verified control challenges in the robot guidance system design such as the hydraulic system delay, nonlinearities in the steering actuators, and inertia in the steering system due the friction of different terrains. Copyright © 2012 Eduardo Pacincia Godoy et al.
Resumo:
This work presents and discusses the main topics involved on the design of a mobile robot system and focus on the control and navigation systems for autonomous mobile robots. Introduces the main aspects of the Robot design, which is a holistic vision about all the steps of the development process of an autonomous mobile robot; discusses the problems addressed to the conceptualization of the mobile robot physical structure and its relation to the world. Presents the dynamic and control analysis for navigation robots with kinematic and dynamic model and, for final, presents applications for a robotic platform of Automation, Simulation, Control and Supervision of Mobile Robots Navigation, with studies of dynamic and kinematic modelling, control algorithms, mechanisms for mapping and localization, trajectory planning and the platform simulator. © 2012 Praise Worthy Prize S.r.l. - All rights reserved.
Resumo:
This paper presents the operational analysis of the single-phase integrated buck-boost inverter. This topology is able to convert the DC input voltage into AC voltage with a high static gain, low harmonic content and acceptable efficiency, all in one single-stage. Main functionality aspects are explained, design procedure, system modeling and control, and also component requirements are detailed. Main simulation results are included, and two prototypes were implemented and experimentally tested, where its results are compared with those corresponding to similar topologies available in literature. © 2012 IEEE.